• 제목/요약/키워드: 정형모델

검색결과 569건 처리시간 0.023초

효과적인 임베디드 소프트웨어 설계를 위한 제어흐름 모델의 자동 검증 (Automatic Verification of the Control Flow Model for Effective Embedded Software Design)

  • 박사천;권기현;하순회
    • 정보처리학회논문지A
    • /
    • 제12A권7호
    • /
    • pp.563-570
    • /
    • 2005
  • 하드웨어와 소프트웨어를 통합 설계하는 프레임워크인 PeaCE(Ptolemy extension as a Codesign Environment)에서는 데이터 흐름과 제어흐름을 모두 표현할 수 있다. PeaCE에서 제어 흐름을 표현하는 fFSM 명세를 정형 검증하기 위해 fFSM의 단계 의미를 정의하였다. 본 논문에서는 이전 연구에서 정의된 정형 의미를 바탕으로 개발한 자동 검증 도구를 소개한다. 이 도구는 내부 모델체커로 SMV를 사용하며 사용자는 직접 논리식을 기술하지 않고도 레이스 조건, 애매한 전이, 순환 전이 등의 주요한 버그들을 검증할 수 있다.

비대칭 초고층건물의 비탄성거동에 관한 연구 (A Study on Inelastic Behavior of an Asymmetric Tall Building)

  • 윤태호;김진구;정명채
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.37-44
    • /
    • 1997
  • 본 논문에서는 지진하중을 받는 고층건물의 비탄성거동 특히, 층수에 따라 평면이 비대칭적으로 감소하여 발생하는 비틀림거동에 대하여 고찰하였다. 평면의 구조적 비대칭성에 의하여 발생하는 강성의 비대칭은 건물이 지진하중을 받을 때 횡변위 뿐만아니라 비틀림변형을 유발하게 된다. 이러한 비탄성 비틀림거동의 해석은 2차원모델로는 어려우므로 3차원해석이 요구된다. 본 논문에서는 102층의 비정형 초고층건물을 모델로 하여 내진설계규준에 의한 지진하중을 각 층에 가하여 하중의 크기를 증가시켜 정적 탄소성해석을 수행하였는데 비틀림에 의한 영향을 평가하기 위하여 비틀림을 제한한 모델과 그 거동을 비교분석하였다. 해석 결과에 따르면 비대칭건물의 탄소성 거동은 비틀림거동에 의하여 매우 큰 영향을 받는 것으로 나타났다.

  • PDF

계층적 능동형태 모델을 이용한 비정형 객체의 움직임 예측형 실시간 추적 (Hierarchical Active Shape Model-based Motion Estimation for Real-time Tracking of Non-rigid Object)

  • 강진영;이성원;신정호;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.1-11
    • /
    • 2004
  • 본 논문에서는 비정형 객체를 능동형태 모델을 사용하여 실시간으로 추적하기 위한 방법을 제시하였다. 객체를 추적 할 때, 가려진 부분의 윤곽을 추정해 낼 수 있는 능동형태 모델을 사용하였으며, 비디오의 각 프레임에서 처리과정의 시간을 줄이기 위해서 영상을 계층적으로 분리하여 실시간 처리를 가능하게 하였다 또한 다음 입력영상의 초기 윤곽을 효율적으로 찾기 위해서 칼만필터(Kalman filter)를 사용하여 특징점을 예측하였고, 블록 정합(block matching) 기법을 추가하여 예측 안정성을 향상시켰다. 비 계층적 방법, 비 예측 방법 등과 비교 실험을 통해서 제안된 계층적, 예측형 방식이 수렴속도 증가와 모델링의 정확도에서 모두 개선된 효과를 얻을 수 있음을 확인하였다.

상호참조 정보와 대화 그래프를 활용한 대화 관계추출 모델 (Dialogue Relation Extraction using Dialogue Graph)

  • 임정우;손준영;김진성;허윤아;서재형;장윤나;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.385-390
    • /
    • 2022
  • 관계추출은 문서 혹은 문장에서 자동으로 엔티티들간의 관계를 추출하는 기술로, 비정형 데이터를 정형데이터로 변환하기에 자연어 처리 중에서도 중요한 분야중 하나이다. 그 중에서도 대화 관계추출은 기존의 문장 단위의 관계추출과는 다르게 긴 길이에 비해 적은 정보의 양, 빈번하게 등장하는 지시대명사 등의 특징을 가지고 있어 주어와 목적어 사이의 관계를 예측하기에 어려움이 있었다. 본 연구에서는 이러한 어려움을 극복하기 위해 대화의 특성을 고려한 대화 그래프를 구축하고 이를 이용한 모델을 제안한다. 제안하는 모델은 상호참조 정보와 문맥정보를 더 반영한 그래프를 통해 산발적으로 퍼져있는 정보를 효율적으로 수집하고, 지시대명사로 인해 어려워진 중요 발화 파악 능력을 증진시켰다. 또한 이를 실험적으로 보이기 위하여 대화 관계추출 데이터셋에 실험해본 결과, 기존 베이스라인 보다 약 10 % 이상의 높은 F1점수를 달성하였다.

  • PDF

비정형, 정형 데이터의 이미지 학습을 활용한 시장예측 (MPIL: Market prediction through image learning of unstructured and structured data)

  • 이윤선;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.16-21
    • /
    • 2021
  • 금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.

3차원 환경 복원을 위한 다수 카메라 최적 배치 학습 기법 (Optimal Camera Placement Leaning of Multiple Cameras for 3D Environment Reconstruction)

  • 김주환;조동식
    • 스마트미디어저널
    • /
    • 제11권9호
    • /
    • pp.75-80
    • /
    • 2022
  • 최근 현실감 있는 경험을 제공하기 위한 몰입형 가상현실(VR) 기술에 대한 연구 개발이 활발하게 진행되고 있다. 가상현실 참여자에게 실제와 유사한 실감적인 가상현실 체험을 제공하기 위해서는 실제 현실 공간에 존재하는 환경 및 객체의 정보를 정밀하게 캡처 및 복원하여 가상 환경 시스템의 모델 데이터로 적용한 시스템 구성이 필요하다. 이러한 가상 환경 구성에 필요한 실 데이터를 획득하기 위해서는 다수의 비정형 카메라를 활용한 셋업으로 이루어진다. 하지만, 다수의 비정형 위치의 카메라를 활용해 실제 공간에서의 3차원으로 구성된 정보를 획득할 경우 카메라의 개수 및 위치가 최적화되지 않아 복원의 오류가 발생할 수 있다. 또한, 정밀한 객체 복원을 위해 과도한 양의 비정형 카메라가 배치될 경우 비정형 카메라 배치에 따른 자원의 낭비 또한 발생할 수 있어 적절한 개수의 비정형 카메라가 배치되어야 한다. 본 논문에서는 3차원 공간 데이터를 복원 시 필요한 정보를 얻기 위해 배치되는 다수의 비정형 카메라를 최적화할 수 있는 최적 카메라 배치(Optimal Camera Placement) 학습 기법을 제안한다. 본 논문에서 제안한 방법을 통해 실제 환경 정보 획득 시 정확한 형태의 복원 데이터를 이용하여 가상 환경을 생성하고, 더욱 몰입도 높은 실감형 콘텐츠 시스템을 사용자에게 제공할 수 있다.

고차원 매핑기법과 딥러닝 네트워크를 통한 정형데이터의 분류 (Classification of Tabular Data using High-Dimensional Mapping and Deep Learning Network)

  • 김경택;장원두
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.119-124
    • /
    • 2023
  • 최근 딥러닝은 다양한 분야에서 전통적인 기계학습에 비해 월등히 높은 성능을 보이고 있으며, 패턴인식을 위한 보편적인 방법으로 자리 잡아 가고 있다. 하지만, 이에 비해 정형데이터를 사용하는 분류 문제에서는 여전히 머신러닝 기법이 주류를 이루고 있다. 본 논문에서는 정형데이터를 고차원 텐서로 변환하는 네트워크 모듈을 제안하며, 이 모듈을 보편적인 딥러닝 네트워크와 함께 구성하여 정형데이터의 분류 문제에 적용하였다. 제안된 방법은 4종의 데이터셋을 활용하여 학습 및 검증되었으며, 제안된 방법은 90.22%의 평균 정확도를 달성하여, 최신 딥러닝 모델인 TabNet에 비해 2.55%p 높은 정확도를 보였다. 제안된 방법은 컴퓨터 비전 분야에서 높은 성능을 보이는 다양한 네트워크 구조를 정형데이터에 활용할 수 있다는 점에서 의미가 있다.

유리화 비정형 탄소(vitreous carbon)를 이용하여 제작한 전계방출 소자의 균일성 증진방법

  • 안상혁;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.53-53
    • /
    • 1999
  • 전계방출을 이용한 평판 표시장치는 CRT가 가진 장점을 모두 갖는 동시에 얇고 가벼우며 낮은 전력소모로 완벽한 색을 구현할 수 있는 차세대 표시장치로서 이에 대한 여국가 활발히 이루어지고 있다. 여기에 사용되는 음극물질로서 실리콘이나 몰리 등을 팁모양으로 제작하여 사용해 왔다. 하지만 잔류가스에 의한 역스퍼터링이나 화학적 반응에 의해서 전계방출 성능이 점차 저하되는 등의 해결해야할 많은 문제가 있다. 이러한 문제들을 해결하기 위하여 탄소계 재료로서 다이아몬드, 다이아몬드상 카본 등을 이용하려는 노력이 진행되어 왔다. 이중 유리화 비정형 탄소는 다량의 결함을 가지고 있는 유리질의 고상 탄소 재로로서, 전기전도도가 우수하면서 outgassing이 적고 기계적 강도가 뛰어나며 고온에서도 화학적으로 안정하여 전계방출 소자의 음극재료로서 알맞은 것으로 생각된다. 유리화 비정형 탄소가루를 전기영동법으로 기판에 코팅하여 전계방출 소자를 제작하였다. 전기영동 용액으로 이소프로필알코올에 질산마그네슘과 소량의 증류수, 유리화 비정형 탄소분말을 섞어주었고 기판으로는 몰리(Mo)가 증착된 유리를 사용하였다. 균일한 증착을 위해서 증착후 역전압을 걸어 주는 방법과 증착 후 플라즈마 처리를 하는 등의 여러 가지 방법을 사용했다. 전계방출 전류는 1$\times$10-7Torr이사에서 측정하였다. 1회 제작된 용액으로 반복해서 증착한 횟수에 따라 표면의 거치기, 입자의 분포, 전계방출 측정 결과 등의 차이가 관찰되었다. 발광이미지는 전압에 따라 변화하였고, 균일한 발광을 관찰하기 위해서 오랜 시간동안 aging 과정을 거쳐야 했다. 그리고 구 모양의 양극을 사용해서 위치를 변화시키며 시동 전기장을 관찰하여 위치에 따른 전계방출의 차이를 조사하여 발광의 균일성을 알 수 있었다.on microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.도상승율을 갖는 경우가 다른 베이킹 시나리오 모델에 비해 효과적이라 생각되며 초대 필요 공급열량은 200kW 정도로 산출되었다. 실질적인 수치를 얻기 위해 보다 고차원 모델로의 해석이 필요하리라 생각된다. 끝으로 장기적인 관점에서 KSTAR 장치의 베이킹 계획도 살펴본다.습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.pective" to workflow architectural discussions. The vocabulary suggested

  • PDF

비정형데이터를 활용한 건축현장 품질성과 평가 모델 개발 (Crafting a Quality Performance Evaluation Model Leveraging Unstructured Data)

  • 이기석;송태근;유위성
    • 한국건축시공학회지
    • /
    • 제24권1호
    • /
    • pp.157-168
    • /
    • 2024
  • 최근 국내 건축현장에서 붕괴사고가 계속해서 발생하고 있어 시공 및 자재 품질 점검과 관리에 대한 공사감리의 중요성이 증가하고 있다. 현행 제도 및 기준에 의하면, 공사감리 업무는 주요 책임이 있는 감리자가 건축현장에서 진행되고 있는 시공 품질, 자재 품질, 재시공 이력 등이 상세하게 기술하여 공사감리보고서를 작성한다. 이러한 문서는 대표적인 비정형데이터로 건축현장에서 생성되고 있는 데이터의 80%의 비중을 차지하고 있으며, 건축현장의 품질정보가 상세하게 기록되어있다. 본 연구에 건축현장에서 발생하고 있는 공사감리보고서를 텍스트마이닝으로 전처리 후 감성사전을 구축하여 품질성과 수준을 평가하고 계량화할 수 있는 SL-QPA 모델을 제안하였다. 모델에서 산정된 성과 점수와 법적 기준에 의한 지표와의 피어슨 상관관계 분석하고, 상관계수에 대한 일원분산분석 결과는 통계적으로 유의미하였다. 제안된 SL-QPA 모델은 현행 건축현장 품질성과 진단에 상호 보완적으로 활용될 수 있고, 공사단계에서 연속적으로 생성되는 비정형데이터를 활용하여 점검 및 관리 활동의 적시성을 향상시킬 것으로 기대된다.

비정형 데이터와 딥러닝을 활용한 내수침수 탐지기술 개발 (Development of a method for urban flooding detection using unstructured data and deep learing)

  • 이하늘;김형수;김수전;김동현;김종성
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1233-1242
    • /
    • 2021
  • 본 연구에서는 비정형 데이터인 사진자료를 이용하여 침수의 발생여부를 판단하는 모델을 개발하였다. 침수분류를 모델 개발을 위하여 CNN기반의 VGG16, VGG19을 이용하였다. 모델을 개발하기 위하여 침수사진과 침수가 발생하지 않은 사진을 웹크롤링 방법을 이용하여 사진을 수집하였다. 웹크롤링 방법을 이용하여 수집한 데이터는 노이즈 데이터가 포함되어 있기 때문에 1차적으로 본 연구와 상관없는 데이터는 소거하였으며, 2차적으로 모델 적용을 위하여 224 × 224로 사진 사이즈를 일괄 변경하였다. 또한 사진의 다양성을 위해서 사진의 각도를 변환하여 이미지 증식을 수행하였으며. 최종적으로 침수사진 2,500장과 침수가 발생하지 않은 사진 2,500장을 이용하여 학습을 수행하였다. 모델 평가결과 모델의 평균 분류성능은 97%로 나타났으며. 향후 본 연구결과를 통하여 개발된 모델을 CCTV관제센터 시스템에 탑재한다면 신속하게 침수피해에 대한 대처가 이루어 질 수 있을 것이라 판단된다.