하드웨어와 소프트웨어를 통합 설계하는 프레임워크인 PeaCE(Ptolemy extension as a Codesign Environment)에서는 데이터 흐름과 제어흐름을 모두 표현할 수 있다. PeaCE에서 제어 흐름을 표현하는 fFSM 명세를 정형 검증하기 위해 fFSM의 단계 의미를 정의하였다. 본 논문에서는 이전 연구에서 정의된 정형 의미를 바탕으로 개발한 자동 검증 도구를 소개한다. 이 도구는 내부 모델체커로 SMV를 사용하며 사용자는 직접 논리식을 기술하지 않고도 레이스 조건, 애매한 전이, 순환 전이 등의 주요한 버그들을 검증할 수 있다.
본 논문에서는 지진하중을 받는 고층건물의 비탄성거동 특히, 층수에 따라 평면이 비대칭적으로 감소하여 발생하는 비틀림거동에 대하여 고찰하였다. 평면의 구조적 비대칭성에 의하여 발생하는 강성의 비대칭은 건물이 지진하중을 받을 때 횡변위 뿐만아니라 비틀림변형을 유발하게 된다. 이러한 비탄성 비틀림거동의 해석은 2차원모델로는 어려우므로 3차원해석이 요구된다. 본 논문에서는 102층의 비정형 초고층건물을 모델로 하여 내진설계규준에 의한 지진하중을 각 층에 가하여 하중의 크기를 증가시켜 정적 탄소성해석을 수행하였는데 비틀림에 의한 영향을 평가하기 위하여 비틀림을 제한한 모델과 그 거동을 비교분석하였다. 해석 결과에 따르면 비대칭건물의 탄소성 거동은 비틀림거동에 의하여 매우 큰 영향을 받는 것으로 나타났다.
본 논문에서는 비정형 객체를 능동형태 모델을 사용하여 실시간으로 추적하기 위한 방법을 제시하였다. 객체를 추적 할 때, 가려진 부분의 윤곽을 추정해 낼 수 있는 능동형태 모델을 사용하였으며, 비디오의 각 프레임에서 처리과정의 시간을 줄이기 위해서 영상을 계층적으로 분리하여 실시간 처리를 가능하게 하였다 또한 다음 입력영상의 초기 윤곽을 효율적으로 찾기 위해서 칼만필터(Kalman filter)를 사용하여 특징점을 예측하였고, 블록 정합(block matching) 기법을 추가하여 예측 안정성을 향상시켰다. 비 계층적 방법, 비 예측 방법 등과 비교 실험을 통해서 제안된 계층적, 예측형 방식이 수렴속도 증가와 모델링의 정확도에서 모두 개선된 효과를 얻을 수 있음을 확인하였다.
관계추출은 문서 혹은 문장에서 자동으로 엔티티들간의 관계를 추출하는 기술로, 비정형 데이터를 정형데이터로 변환하기에 자연어 처리 중에서도 중요한 분야중 하나이다. 그 중에서도 대화 관계추출은 기존의 문장 단위의 관계추출과는 다르게 긴 길이에 비해 적은 정보의 양, 빈번하게 등장하는 지시대명사 등의 특징을 가지고 있어 주어와 목적어 사이의 관계를 예측하기에 어려움이 있었다. 본 연구에서는 이러한 어려움을 극복하기 위해 대화의 특성을 고려한 대화 그래프를 구축하고 이를 이용한 모델을 제안한다. 제안하는 모델은 상호참조 정보와 문맥정보를 더 반영한 그래프를 통해 산발적으로 퍼져있는 정보를 효율적으로 수집하고, 지시대명사로 인해 어려워진 중요 발화 파악 능력을 증진시켰다. 또한 이를 실험적으로 보이기 위하여 대화 관계추출 데이터셋에 실험해본 결과, 기존 베이스라인 보다 약 10 % 이상의 높은 F1점수를 달성하였다.
금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.
최근 현실감 있는 경험을 제공하기 위한 몰입형 가상현실(VR) 기술에 대한 연구 개발이 활발하게 진행되고 있다. 가상현실 참여자에게 실제와 유사한 실감적인 가상현실 체험을 제공하기 위해서는 실제 현실 공간에 존재하는 환경 및 객체의 정보를 정밀하게 캡처 및 복원하여 가상 환경 시스템의 모델 데이터로 적용한 시스템 구성이 필요하다. 이러한 가상 환경 구성에 필요한 실 데이터를 획득하기 위해서는 다수의 비정형 카메라를 활용한 셋업으로 이루어진다. 하지만, 다수의 비정형 위치의 카메라를 활용해 실제 공간에서의 3차원으로 구성된 정보를 획득할 경우 카메라의 개수 및 위치가 최적화되지 않아 복원의 오류가 발생할 수 있다. 또한, 정밀한 객체 복원을 위해 과도한 양의 비정형 카메라가 배치될 경우 비정형 카메라 배치에 따른 자원의 낭비 또한 발생할 수 있어 적절한 개수의 비정형 카메라가 배치되어야 한다. 본 논문에서는 3차원 공간 데이터를 복원 시 필요한 정보를 얻기 위해 배치되는 다수의 비정형 카메라를 최적화할 수 있는 최적 카메라 배치(Optimal Camera Placement) 학습 기법을 제안한다. 본 논문에서 제안한 방법을 통해 실제 환경 정보 획득 시 정확한 형태의 복원 데이터를 이용하여 가상 환경을 생성하고, 더욱 몰입도 높은 실감형 콘텐츠 시스템을 사용자에게 제공할 수 있다.
최근 딥러닝은 다양한 분야에서 전통적인 기계학습에 비해 월등히 높은 성능을 보이고 있으며, 패턴인식을 위한 보편적인 방법으로 자리 잡아 가고 있다. 하지만, 이에 비해 정형데이터를 사용하는 분류 문제에서는 여전히 머신러닝 기법이 주류를 이루고 있다. 본 논문에서는 정형데이터를 고차원 텐서로 변환하는 네트워크 모듈을 제안하며, 이 모듈을 보편적인 딥러닝 네트워크와 함께 구성하여 정형데이터의 분류 문제에 적용하였다. 제안된 방법은 4종의 데이터셋을 활용하여 학습 및 검증되었으며, 제안된 방법은 90.22%의 평균 정확도를 달성하여, 최신 딥러닝 모델인 TabNet에 비해 2.55%p 높은 정확도를 보였다. 제안된 방법은 컴퓨터 비전 분야에서 높은 성능을 보이는 다양한 네트워크 구조를 정형데이터에 활용할 수 있다는 점에서 의미가 있다.
전계방출을 이용한 평판 표시장치는 CRT가 가진 장점을 모두 갖는 동시에 얇고 가벼우며 낮은 전력소모로 완벽한 색을 구현할 수 있는 차세대 표시장치로서 이에 대한 여국가 활발히 이루어지고 있다. 여기에 사용되는 음극물질로서 실리콘이나 몰리 등을 팁모양으로 제작하여 사용해 왔다. 하지만 잔류가스에 의한 역스퍼터링이나 화학적 반응에 의해서 전계방출 성능이 점차 저하되는 등의 해결해야할 많은 문제가 있다. 이러한 문제들을 해결하기 위하여 탄소계 재료로서 다이아몬드, 다이아몬드상 카본 등을 이용하려는 노력이 진행되어 왔다. 이중 유리화 비정형 탄소는 다량의 결함을 가지고 있는 유리질의 고상 탄소 재로로서, 전기전도도가 우수하면서 outgassing이 적고 기계적 강도가 뛰어나며 고온에서도 화학적으로 안정하여 전계방출 소자의 음극재료로서 알맞은 것으로 생각된다. 유리화 비정형 탄소가루를 전기영동법으로 기판에 코팅하여 전계방출 소자를 제작하였다. 전기영동 용액으로 이소프로필알코올에 질산마그네슘과 소량의 증류수, 유리화 비정형 탄소분말을 섞어주었고 기판으로는 몰리(Mo)가 증착된 유리를 사용하였다. 균일한 증착을 위해서 증착후 역전압을 걸어 주는 방법과 증착 후 플라즈마 처리를 하는 등의 여러 가지 방법을 사용했다. 전계방출 전류는 1$\times$10-7Torr이사에서 측정하였다. 1회 제작된 용액으로 반복해서 증착한 횟수에 따라 표면의 거치기, 입자의 분포, 전계방출 측정 결과 등의 차이가 관찰되었다. 발광이미지는 전압에 따라 변화하였고, 균일한 발광을 관찰하기 위해서 오랜 시간동안 aging 과정을 거쳐야 했다. 그리고 구 모양의 양극을 사용해서 위치를 변화시키며 시동 전기장을 관찰하여 위치에 따른 전계방출의 차이를 조사하여 발광의 균일성을 알 수 있었다.on microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.도상승율을 갖는 경우가 다른 베이킹 시나리오 모델에 비해 효과적이라 생각되며 초대 필요 공급열량은 200kW 정도로 산출되었다. 실질적인 수치를 얻기 위해 보다 고차원 모델로의 해석이 필요하리라 생각된다. 끝으로 장기적인 관점에서 KSTAR 장치의 베이킹 계획도 살펴본다.습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.pective" to workflow architectural discussions. The vocabulary suggested
최근 국내 건축현장에서 붕괴사고가 계속해서 발생하고 있어 시공 및 자재 품질 점검과 관리에 대한 공사감리의 중요성이 증가하고 있다. 현행 제도 및 기준에 의하면, 공사감리 업무는 주요 책임이 있는 감리자가 건축현장에서 진행되고 있는 시공 품질, 자재 품질, 재시공 이력 등이 상세하게 기술하여 공사감리보고서를 작성한다. 이러한 문서는 대표적인 비정형데이터로 건축현장에서 생성되고 있는 데이터의 80%의 비중을 차지하고 있으며, 건축현장의 품질정보가 상세하게 기록되어있다. 본 연구에 건축현장에서 발생하고 있는 공사감리보고서를 텍스트마이닝으로 전처리 후 감성사전을 구축하여 품질성과 수준을 평가하고 계량화할 수 있는 SL-QPA 모델을 제안하였다. 모델에서 산정된 성과 점수와 법적 기준에 의한 지표와의 피어슨 상관관계 분석하고, 상관계수에 대한 일원분산분석 결과는 통계적으로 유의미하였다. 제안된 SL-QPA 모델은 현행 건축현장 품질성과 진단에 상호 보완적으로 활용될 수 있고, 공사단계에서 연속적으로 생성되는 비정형데이터를 활용하여 점검 및 관리 활동의 적시성을 향상시킬 것으로 기대된다.
본 연구에서는 비정형 데이터인 사진자료를 이용하여 침수의 발생여부를 판단하는 모델을 개발하였다. 침수분류를 모델 개발을 위하여 CNN기반의 VGG16, VGG19을 이용하였다. 모델을 개발하기 위하여 침수사진과 침수가 발생하지 않은 사진을 웹크롤링 방법을 이용하여 사진을 수집하였다. 웹크롤링 방법을 이용하여 수집한 데이터는 노이즈 데이터가 포함되어 있기 때문에 1차적으로 본 연구와 상관없는 데이터는 소거하였으며, 2차적으로 모델 적용을 위하여 224 × 224로 사진 사이즈를 일괄 변경하였다. 또한 사진의 다양성을 위해서 사진의 각도를 변환하여 이미지 증식을 수행하였으며. 최종적으로 침수사진 2,500장과 침수가 발생하지 않은 사진 2,500장을 이용하여 학습을 수행하였다. 모델 평가결과 모델의 평균 분류성능은 97%로 나타났으며. 향후 본 연구결과를 통하여 개발된 모델을 CCTV관제센터 시스템에 탑재한다면 신속하게 침수피해에 대한 대처가 이루어 질 수 있을 것이라 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.