• Title/Summary/Keyword: 정합보정

Search Result 247, Processing Time 0.027 seconds

Automatic Image-to-Image Registration of Middle- and Low-resolution Satellite Images Using Scale-Invariant Feature Transform Technique (SIFT 기법을 이용한 중.저해상도 위성영상간의 자동 기하보정)

  • Han, Dong-Yeob;Kim, Dae-Sung;Lee, Jae-Bin;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.409-416
    • /
    • 2006
  • To use image data obtained from different sensors and different techniques, the preprocessing step that registers them in a common coordinate system is needed. For this purpose, we developed the methodology to register middle- and low-resolution satellite images automatically. Firstly, candidate matching points were extracted using the Harris and Harris-affine algorithm. Secondly, we used the correlation coefficient, normalized correlation coefficient and SIFT algorithm to detect conjugate matching points from candidates. Then, to test the feasibility of approaches, we applied the developed methodology to various kinds of satellite images and compared results. The results clearly demonstrate that the methology using the SIFT is appropriate to register these multi-resolution satellite images automatically, compared with the classical cross-correlation.

Feature Point Matching Technique using Adjustment of Distortion between Correlation Windows (상관 윈도우사이의 왜곡을 보정한 특징점 정합 기법)

  • Ha, Seung-Tae;Han, Jun-Hui
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.440-447
    • /
    • 2001
  • 본 논문은 영상과 연관된 3차원 정보로부터 초기 3차원 변환을 유추, 상관윈도우를 변환시켜 정합에 이용하는 새로운 정합기법을 제안한다. 즉, 초기 스테레오 정합 등을 통한 3차원 정보를 추출하고, 인위적인 초기 특징점의 대응을 통해 3차원 변환을 얻으며, 이를 이용해 상관 윈도우의 3차원 변환을 가능하게 한다. 상관 윈도우의 3차원 변환은 기존의 방법이 가지는 영상 흐름의 2차원적인 제한을 이용한 정합방법에 비해 실제 카메라의 변환 유추에 합당하다. 또한 3차원 변환을 통해 정합 대상 점의 탐색범위를 최소화하고 정합의 결과에 신뢰성을 더한다. 실험에서는 다양한 영상의 정합 결과와 기존 방법과의 상관 계수 비교를 통해 본 논문이 제안하는 정합방법의 우월성을 보인다.

  • PDF

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

The Implementation of the Compensation Algorithm of Time Delay for Microwave Polar Transmitters (마이크로파 폴라 송신기의 시간지연 보상 알고리즘 구현)

  • Kim, Min-Soo;Lee, Kun-Joon;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.790-797
    • /
    • 2015
  • In this paper, We made the microwave polar transmitter based on the software to analyze the synchronization status between the phase signal and the amplitude signal of polar transmitter, and analyzed the result. In order to solve the time delay mismatch problem, we applied simplified compensation algorithm and compared the synchronization status between the two paths before and after compensation. Before compensation, the value of time delay mismatch was the maximum of 97 nsec at 9.3 GHz with the occupied bandwidth of 12 MHz, but after applying the compensation algorithm, the signals between the two paths were synchronized, and we identified the occupied bandwidth could recover to the previous 3.7 MHz.

Intensity Correction of 3D Stereoscopic Images Using Region Segmentation (영역분할을 이용한 3D입체영상의 밝기 보정)

  • Kim, Sang-Hyun;So, Gil-Ja;Kim, Jeong-Yeop
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.644-647
    • /
    • 2010
  • 본 논문에서는 영역분할을 이용한 3D입체영상의 밝기 보정방법을 제안한다. 제안된 방법은 입력된 좌우 3D입체영상 중 우 영상을 이진화를 통한 영역분할을 하고 크기가 작은 영역들은 제거한다. 영역단위의 매칭을 할 때 영역경계에서 발생하는 불연속성을 제거하기 위해서 모폴로지 필터로 영역경계지역(contour region)을 일정부분 제거한다. 우 영상의 각 영역들에 대해 대응되는 좌 영상내의 영역을 상관계수(correlation coefficient)를 이용한 정합을 통해 추출한다. 좌우 영상의 영역 간 히스토그램 명세화를 수행함으로써 우 영상의 밝기 보정을 한다. 실험에서 좌 영상으로부터 블록단위 움직임보상으로 우 영상을 생성했을 때 제안한 방법이 블록평균 정합오차가 가장 작은 것을 확인 할 수 있었다.

Automatic fusion of T2-weighted image and diffusion weighted image in pelvis MRI (골반 T2강조 MR 영상과 확산강조 MR 영상 간 자동 융합)

  • Kang, Hye-Won;Jung, Ju-Lip;Hong, Helen;Hwang, Sung-Il
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.359-361
    • /
    • 2012
  • 본 논문은 T2강조 MR 영상과 확산강조 MR 영상의 강체 정합을 통해 크기, 위치, 회전 변환 왜곡을 보정하여 자궁내막암의 위치를 자동으로 찾는 방법을 제안한다. 영상해상도와 밝기값 분포가 서로 다른 두 영상간 정합의 정확성을 향상시키기 위해 잡음을 제거하고 두 영상의 밝기값 신호 분포의 유사성을 강화시킨다. 유사성이 향상된 두 영상의 크기, 위치, 회전 변환 왜곡을 보정하기 위해 정규화 상호정보를 최대화 하는 강체 정합을 반복적으로 수행한다. 정합된 영상에서 악성 종양을 쉽게 판별 할 수 있도록 현상확상계수지도를 컬러맵으로 생성하여 T2강조 MR 영상에서 얻은 종양의 후보군에 매핑하여 T2강조 MR 영상과 융합한다. 실험을 위하여 최적화 반복 과정에 따른 정규화 상호정보 수치 수렴 과정을 확인하고, 융합 후 종양 영역이 매핑되는 것을 육안평가를 통해 분석하였다. 제안방법을 통하여 T2강조 MR 영상과 확산강조 MR 영상을 융합함으로써 종양의 위치를 자동으로 파악하고 자궁내막암의 병기를 확정하는 용도로 활용할 수 있다.

Face Recognition base on Image Normalization by Template Matching (형판정합을 이용한 영상 정규화에 기반한 얼굴 인식 알고리즘)

  • 신현금;최영규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.331-333
    • /
    • 2003
  • 본 논문에서는 새로운 얼굴 인식 방법을 제안한다. 제안된 방법은 입력 영상에서 눈이라고 생각되는 영역을 형판 정합방법을 이용하여 먼저 추출하고. 양 눈의 위치 정보를 사용하여 얼굴 영역의 크기와 회전정도를 보정하여 정규화된 얼굴영상을 만들며, 결국 PCA 방법을 사용하여 인식하게 된다. 이렇게 함으로써 PCA가 안정된 영상이 입력되면 좋은 인식률을 보이지만 전반적인 조명의 변화에 잘 대응하지 못하고, 복잡한 배경인 경우 얼굴영역의 위치 변화에 민감하며, 많이 기울어진 영상에 취약하다는 단점을 형판 정합을 통한 전 처리 과정을 통해 보완할 수 있게 된다. 실험 결과 제안된 방법이 PCA의 인식 성능을 크게 향상시킬 수 있음을 알 수 있었다.

  • PDF

Impact Analysis of Buildings for KOMPSAT-3 Image Co-registration (KOMPSAT-3 위성영상의 상대기하보정에 대한 건물의 영향 분석)

  • Park, Jueon;Kim, Taeheon;Yun, Yerin;Lee, Chabin;Lee, Jinmin;Lee, Changno;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.293-304
    • /
    • 2022
  • In this study, to analyze the effect of buildings on the image co-registration performance, co-registration results are compared according to the presence or absence of matching points extracted from buildings. To remove the matching points extracted from buildings, a building mask generated by extracting building objects from the digital topographic map was used. In addition, matching points extraction performance and image co-registration accuracy were analyzed according to the magnitude of the convergence angle. Image co-registration results were compared by applying the affine and piecewise linear transformation models, respectively. According to the experimental results, the affine transformation model showed an overall improvement in accuracy after removing the matching points extracted from buildings. On the other hand, the piecewise linear transformation model improved the accuracy at the checkpoints including the surrounding buildings, but the accuracy improvement was not significant at checkpoints in the flat area without the existence of buildings. In addition, when the piecewise linear transformation model was applied, stable accuracy of less than 2 pixels was derived from images with a convergence angle of 20° or less.

Integration of IKONOS-2 Satellite Imagery and ALS dataset by Compensating Biases of RPC Models (RPC 모델의 보정을 통한 IKONOS-2 위성영상과 항공레이저측량 자료의 정합에 관한 연구)

  • Lee, Jaebin;Yu, Kiyun;Lee, Changno;Song, Wooseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.437-444
    • /
    • 2008
  • In the paper, a methodology is verified to integrate IKONOS-2 satellite imagery and ALS dataset by compensating biases of RPC models. To achieve this, conjugate features from both data should be extracted in advance. For this purpose, linear features are chosen as conjugate features because they can be accurately extracted from man-made structures in urban area and more easily extracted than point features from ALS data. Then, observation equations are established from similarity measurements of the extracted features. During the process, several kinds of transformation functions were selected and used to register them. In addition, it was also analyzed how the number of linear features used as control features affects the accuracy of registration results. Finally, the results were evaluated by using check-points obtained from DGPS surveying techniques and it was clearly demonstrated that the proposed algorithms are appropriate to integrate these data.