• Title/Summary/Keyword: 정합보정

Search Result 246, Processing Time 0.02 seconds

Comparison and Evaluation of the Effectiveness between Respiratory Gating Method Applying The Flow Mode and Additional Gated Method in PET/CT Scanning. (PET/CT 검사에서 Flow mode를 적용한 Respiratory Gating Method 촬영과 추가 Gating 촬영의 비교 및 유용성 평가)

  • Jang, Donghoon;Kim, Kyunghun;Lee, Jinhyung;Cho, Hyunduk;Park, Sohyun;Park, Youngjae;Lee, Inwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • Purpose The present study aimed at assessing the effectiveness of the respiratory gating method used in the flow mode and additional localized respiratory-gated imaging, which differs from the step and go method. Materials and Methods Respiratory gated imaging was performed in the flow mode to twenty patients with lung cancer (10 patients with stable signals and 10 patients with unstable signals), who underwent PET/CT scanning of the torso using Biograph mCT Flow PET/CT at Bundang Seoul University Hospital from June 2016 to September 2016. Additional images of the lungs were obtained by using the respiratory gating method. SUVmax, SUVmean, and Tumor Volume ($cm^3$) of non-gating images, gating images, and additional lung gating images were found with Syngo,bia (Siemens, Germany). A paired t-test was performed with GraphPad Prism6, and changes in the width of the amplitude range were compared between the two types of gating images. Results The following results were obtained from all patients when the respiratory gating method was applied: $SUV_{max}=9.43{\pm}3.93$, $SUV_{mean}=1.77{\pm}0.89$, and $Tumor\;Volume=4.17{\pm}2.41$ for the non-gating images, $SUV_{max}=10.08{\pm}4.07$, $SUV_{mean}=1.75{\pm}0.81$, and $Tumor\;Volume=3.56{\pm}2.11$ for the gating images, and $SUV_{max}=10.86{\pm}4.36$, $SUV_{mean}=1.77{\pm}0.85$, $Tumor\;Volume=3.36{\pm}1.98$ for the additional lung gating images. No statistically significant difference in the values of $SUV_{mean}$ was found between the non-gating and gating images, and between the gating and lung gating images (P>0.05). A significant difference in the values of $SUV_{max}$ and Tumor Volume were found between the aforementioned groups (P<0.05). The width of the amplitude range was smaller for lung gating images than gating images for 12 from 20 patients (3 patients with stable signals, 9 patients with unstable signals). Conclusion In PET/CT scanning using the respiratory gating method in the flow mode, any lesion movements caused by respiration were adjusted; therefore, more accurate measurements of $SUV_{max}$, and Tumor Volume could be obtained from the gating images than the non-gating images in this study. In addition, the width of the amplitude range decreased according to the stability of respiration to a more significant degree in the additional lung gating images than the gating images. We found that gating images provide information that is more useful for diagnosis than the one provided by non-gating images. For patients with irregular signals, it may be helpful to perform localized scanning additionally if time allows.

  • PDF

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

PTV Margins for Prostate Treatments with an Endorectal Balloon (전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진)

  • Kim, Hee-Jung;Chung, Jin-Beom;Ha, Sung-Whan;Kim, Jae-Sun;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.166-176
    • /
    • 2010
  • Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

Compact Orthomode Transducer for Field Experiments of Radar Backscatter at L-band (L-밴드 대역 레이더 후방 산란 측정용 소형 직교 모드 변환기)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Joo, Jeong-Myeong;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.711-719
    • /
    • 2011
  • A study of miniaturization of an L-band orthomode transducer(OMT) for field experiments of radar backscatter is presented in this paper. The proposed OMT is not required the additional waveguide taper structures to connect with a standard adaptor by the newly designed junction structure which bases on a waveguide taper. Total length of the OMT for L-band is about 1.2 ${\lambda}_o$(310 mm) and it's a size of 60 % of the existing OMTs. And, to increase the matching and isolation performances of each polarization, two conducting posts are inserted. The bandwidth of 420 MHz and the isolation level of about 40 dB are measured in the operating frequency. The L-band scatterometer consisting of the manufactured OMT, a horn-antenna and network analyzer(Agilent 8753E) was used STCT and 2DTST to analysis the measurement accuracy of radar backscatter. The full-polarimetric RCSs of test-target, 55 cm trihedral corner reflector, measured by the calibrated scatterometer have errors of -0.2 dB and 0.25 dB for vv-/hh-polarization, respectively. The effective isolation level is about 35.8 dB in the operating frequency. Then, the horn-antenna used to measure has the length of 300 mm, the aperture size of $450{\times}450\;mm^2$, and HPBWs of $29.5^{\circ}$ and $36.5^{\circ}$ on the principle E-/H-planes.

Performance Characteristics of MicroPET R4 Scanner for Small Animal Imaging (소동물 영상을 위한 MicroPET R4스캐너의 특성평가)

  • Lee, Byeong-Il;Lee, Jae-Sung;Kim, Jin-Su;Lee, Dong-Soo;Choi, Chang-Un;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: Dedicated animal PET is useful equipment for the study of new PET tracer. recently, microPET R4 was installed in the Korea institute of radiology and medical science. In this study, we measured the characteristics of scanner. Materials and methods: Resolution was measured using a line source (F-18:65 ${\mu}Ci$, inner diameter: 0.5 mm). The line source was put in the axial direction and was moved from the center of field of view to outside with 1 mm interval. PET images were reconstructed using a filtered back-protection and ordered subset expectation maximization. line source (16.5 ${\mu}Ci$, 78 mm) was put on the tenter of axial direction to measure the sensitivity when the deadtime was under 1%. Images were acquired during 4 minutes respectively from center to 39 mm outward. Delayed count was subtracted from total count and then decay was corrected for the calculation of sensitivity. Noise equivalent count ratio and scatter fraction were calculated using cylindrical phantom. Results: Spatial resolution of reconstructed image using filtered back-projection was 1.86 mm(radial), 1.95 mm(tangential), 1.95 mm(axial) in the tenter of field of view, and 2.54 mm, 2.8 mm, 1.61 mm in 2 cm away from the center respectively. Sensitivity was 2.36% at the center of transaxial field of view. Scatter fraction was 20%. Maximal noise equivalent count ratio was 66.4 kcps at 242 kBq/mL. Small animal images were acquired for confirmation of performance. Conclusion: Performance characteristics of microPET R4 were similar with reported value. So this will be a useful tool for small animal imaging.