• Title/Summary/Keyword: 정표고

Search Result 771, Processing Time 0.025 seconds

Precise Height Determination in Mountainous Areas of South Korea (우리나라 산악지에서의 정밀표고 결정)

  • Lee, Suk-Bae;Auh, Su-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • The purpose of this study is to determine the precise height in mountainous areas of South Korea and Jiri mountain area was selected as a test bed for the study. Gravity observation and GNSS surveying were performed for 44 BM(Benchmark) points in the test bed and calculate the height and the height correction. In the calculation, the dynamic correction amount, the orthometric correction amount and the normal correction amount were calculated, and the dynamic height and orthometric height and the normal height were calculated considering each correction amount. The results showed that the difference between normal gravity and observed gravity and also the difference between orthometric correction and the normal correction. In addition, the results of the comparison of the present official BM height and the computed orthometric height in this study show that Korean height system should be shifted from the normal orthometric height system to the orthometric height system. Because the difference between the orthometric correction and the normal correction within the test bed indicated a distribution of at a minimum of -234.41 mm up to 196.925 mm, and the difference between the present official BM height and the calculated orthometric height were distributed from -0.121m to 0.011 m.

Utilizing Precise Geoid Model for Conversion of Airborne LiDAR Data into Orthometric Height (항공라이다데이터 정표고 변환을 위한 정밀지오이드 모델 이용)

  • Lee, Won-Choon;We, Gwang-Jae;Jung, Tae-Jun;Kwon, Oh-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • In this study, we have intended to analyze the possibility of using the precise geoid model and to find the best geoid model for working by the airborne LiDAR system. So we have calculated the geoid height from the precise geoid models (KGEOID08, EGM2008, EIGEN-CG03C) and have analyzed results by comparing the geometric geoid height from surveying and geoid heights from geoid models. As a result, the KGEOID08 that had 0.152m of RMSE was assessed the best geoid model for making DEM(DTM) by airborne LiDAR system. Also we have found the needed arrangement and numbers of reference point when the KGEOID08 was used for conversion into orthometric height of LiDAR data.

Redefinition of the Original Benchmark Height using Long-term Tide Observations Analysis and GPS Levelling Methods (장기간 조위관측자료 분석과 GPS 수준측량 수준원점 성과 재정의)

  • Jung, Tae-Jun;Yoon, Hong-Sic;Hwang, Jin-Sang;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.393-403
    • /
    • 2011
  • In this study, we suggested the period of tide observations is proper to calculate the mean sea level(MSL) precisely on Incheon tide station using wavelet analysis, and newly determined then the vertical reference surface of Korea using the calculated MSL. In order to calculate the height difference between the calculated MSL and specific ground station (ICGP) near the Incheon tide stations, we performed the laser measurements directly to the sea surface where located below ICGP. The orthometric-height of ICGP was determined that corrected the height difference to the calculated MSL using linear interpolation method. Finally, we connected the orthometric-height of ICGP with the original benchmark (ORBM) using GPS leveling methods for determining the new orthometric-height of ORBM. As the results, there is a variation amount of 0.026m between the new MSL was calculated in this study and old MSL was calculated in 1910's. Also, there is a difference of 0.035m between the new and old orthometric-heights of ORBM. The connection (or leveling) error of 0.009m was revealed in new orthometric height of ORBM with consideration of MSL variation which may caused by the error of GPS ellipsoid height and/or geoid model. In this study, we could be determined precisely the orthometric-height of ORBM based on the new MSL of Incheon Bay using only GPS leveling method, not a spirit leveling method. Therefore, it is necessary to determine the vertical datum strictly using long-term and continuously tide observations more than 19 years and to use the GPS leveling method widely in the height leveling work for the effective changeover from the orthonormal to the orthometric in national height system.

The Determination of Orthometric Height based on Gravity in Korea (우리나라 수준점의 중력기반 정표고 결정)

  • Lee, Yoo-Jung;Choi, Yun-Soo;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.99-106
    • /
    • 2010
  • A vertical datum requires an origin, which is a point on the Earth's surface where the height of the point is a defined value(26.6871m). From this origin point, heights (height differences) can be measured to any other point using standard leveling and gravity measurement procedures. However, the leveling network over the Korea bas been established by using the normal gravity instead of the actual gravity values, and the heights for the points are published by National Geographic Information Institute (NGII). This may cause height for especially in the area where high-relief mountains are dominant. Therefore, the height errors caused by using normal gravity instead of actual gravity values are analyzed in this study. Then, the differences between the orthometric heights and the published heights, i.e., normal orthometric height are analyzed.

Calculation of orthometric correction by observed gravity at Korean benchmark line (우리나라 수준노선에서 실측중력에 의한 정사보정량 계산)

  • Kim, Cheol-Young;Lee, Suk-Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.319-325
    • /
    • 2011
  • It has been used not orthometric height but normal orthometric height for the official height in Korean benchmark because it has been used not observed gravity but normal gravity for the computation of orthometric correction. The purpose of this study is to propose height renewal method of Korean benchmark. For this purpose, we observed gravity by CG5 digital gravimeter in both the first benchmark line between Sokcho and Gangneung area and the second benchmark line between Soksa and Inje area. We calculated relative gravity value and orthometric correction in all benchmarks. So, the maximum orthometric correction shows -0.349mm in the first benchmark line, and the maximum orthometric correction shows -44.060mm in the second benchmark line. In conclusion, we can confirm that the orthometric correction based on observed gravity is necessary for more accurate official height computation in the Korean benchmark.

The Determination of Orthometric Height based on Gravity in Korea (우리나라 수준점의 중력기반 정표고 결정)

  • Lee, Yoo-Jung;Choi, Yun-Soo;Kim, Jae-Myeong;Song, Hyun-Kun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.281-282
    • /
    • 2010
  • 우리나라의 수직기준은 인천만의 평균해수면으로 이 높이를 기준으로 수준점의 표고를 결정한다. 현재 우리나라 수준점의 고시성과는 실제 중력의 영향을 고려하는 대신 정규중력식에 의한 타원보정량을 계산하여, 높이차를 보정한 뒤 수준원점을 고정하고 최소제곱법을 수행하여 산출한 정규표고이다. 하지만 우리나라의 경우 산지가 많아 지형의 기복이 심하고 산맥을 가로지르는 수준노선이 있어 중력에 의한 영향을 무시할 수 없으나 현재 그 영향을 고려하고 있지 못하고 있는 실정이다. 따라서 본 연구에서는 항공 중력데이터를 이용하여 수준점의 중력값을 산출한 뒤 정표고를 산출하여 현재 사용하고 있는 고시좌표와 비교해 보고자한다.

  • PDF

Geometric Geoid Determination in South Korea using GPS/Levelling Data

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.285-289
    • /
    • 1995
  • This paper describes the determination of geoid using height data measured by GPS and Spirit Levelling. The GPS data of the 88 stations were used to determine the geoid undulation (N) which can be easily obtained by subtracting the orthometric height(H) from the ellipsoidal height(h). From the geoid undulation (N) calculated at each station mentioned above, geoid plots with a contour interval of 0.25 m were drawn using two interpolation methods. The following interpolation methods were applied and compared with each other: Minimum Curvature Method and Least Squares Fitted Plane. Comparison between geometric geoid and gravimetric geoid undulation by FFT technique was carried out.

  • PDF

Calculation of Precision Orthometric Height by Orthometric Correction (정사보정에 의한 정표고의 정밀계산)

  • 윤홍식;조재명
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.117-125
    • /
    • 2004
  • This paper describes the orthometric correction for determining the orthometric height obtained from height difference by precise leveling or GPS leveling. Five formulas are used to calculate the orthometric correction for two level lines as an examples. Based on the comparison results Strang van Hees' formula that use the surface gravity is better than the others to compute the orthometric corrections on spirit leveling and GPS/Leveling in an area where mean hight is high and terrain relief show high variability. Further research is necessary to improve the results of this study using Mader method, etc..

The Research for Practical Use of GPS/Leveling (GPS/Leveling의 실용적 활용 방안에 관한 연구)

  • Park, Byung-Uk;Choi, Yun-Soo;Shin, Sang-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.107-114
    • /
    • 2002
  • This study aimed to estimate accuracy of GPS/Leveling and to present availability of GPS/Leveling in public surveying. For this purpose, we carried out GPS survey for bench marks and control points of Hongsung area. Orthometric heights calculated by two GPS/Leveling methods were compared to reference height. The one is calculated by base of geoid models such as EGM96, OSU91A, KGEOID99, and the other is calculated by network adjustment using fixed point. The results of GPS/Leveling by geoid models show that RMSE of EGM96 is ${\pm}0.061m,\;OSU91A\;{\pm}0.725m,\;KGEOID99\;{\pm}0.598m$. The results of GPS/Leveling by network adjustment show that the best RMSE is ${\pm}0.043m$ in case of using three fixed bench mark, and this method can be used for leveling effectively. GPS/Leveling would be able to apply in forth order public leveling and height determination of public control points.

  • PDF