• Title/Summary/Keyword: 정칙행렬

Search Result 12, Processing Time 0.014 seconds

A review on robust principal component analysis (강건 주성분분석에 대한 요약)

  • Lee, Eunju;Park, Mingyu;Kim, Choongrak
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Principal component analysis (PCA) is the most widely used technique in dimension reduction, however, it is very sensitive to outliers. A robust version of PCA, called robust PCA, was suggested by two seminal papers by Candès et al. (2011) and Chandrasekaran et al. (2011). The robust PCA is an essential tool in the artificial intelligence such as background detection, face recognition, ranking, and collaborative filtering. Also, the robust PCA receives a lot of attention in statistics in addition to computer science. In this paper, we introduce recent algorithms for the robust PCA and give some illustrative examples.

Simulation Study on E-commerce Recommender System by Use of LSI Method (LSI 기법을 이용한 전자상거래 추천자 시스템의 시뮬레이션 분석)

  • Kwon, Chi-Myung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • A recommender system for E-commerce site receives information from customers about which products they are interested in, and recommends products that are likely to fit their needs. In this paper, we investigate several methods for large-scale product purchase data for the purpose of producing useful recommendations to customers. We apply the traditional data mining techniques of cluster analysis and collaborative filtering(CF), and CF with reduction of product-dimensionality by use of latent semantic indexing(LSI). If reduced product-dimensionality obtained from LSI shows a similar latent trend of customers for buying products to that based on original customer-product purchase data, we expect less computational effort for obtaining the nearest-neighbor for target customer may improve the efficiency of recommendation performance. From simulation experiments on synthetic customer-product purchase data, CF-based method with reduction of product-dimensionality presents a better performance than the traditional CF methods with respect to the recall, precision and F1 measure. In general, the recommendation quality increases as the size of the neighborhood increases. However, our simulation results shows that, after a certain point, the improvement gain diminish. Also we find, as a number of products of recommendation increases, the precision becomes worse, but the improvement gain of recall is relatively small after a certain point. We consider these informations may be useful in applying recommender system.

  • PDF