딥러닝 기술을 이용한 정치적 성향의 편향성 분류를 위하여 신문 뉴스 기사를 수집하고, 머신러닝을 위한 학습 데이터를 구축하였다. 학습 데이터의 구축은 보수 성향과 진보 성향을 대표하는 6개 언론사의 뉴스에서 정치적 성향을 이진 분류 데이터로 구축하였다. 뉴스 기사의 수집 방법으로 최근 이슈들 중에서 정치적 성향과 밀접하게 관련이 있는 키워드 15개를 선정하고 이에 관한 뉴스 기사들을 수집하였다. 그 결과로 11,584개의 학습 및 실험용 데이터를 구축하였으며, 정치적 편향성 분류를 위한 머신러닝 모델을 설계하였다. 머신러닝 기법으로 학습 및 실험을 위해 형태소 단위의 임베딩을 이용하여 문장 및 문서 임베딩으로 확장하였으며, SVM(Support Vector Machine)을 이용하여 정치적 편향성 분류 실험을 수행한 결과로 75%의 정확도를 달성하였다.
뉴스 기사의 정치 분야는 보수, 진보와 같이 양극화된 편향적 특성이 존재하며 이를 정치적 편향성이라고 한다. 뉴스 기사로부터 편향성 문제를 분류하기 위해 키워드 기반의 학습 데이터를 구축하였다. 대부분의 임베딩 연구에서는 미등록어로 인한 문제를 완화시키기 위해 형태소 단위로 문장을 구성한다. 본 논문에서는 문장을 언어 모델에 의해 세부적으로 분할하는 부분 단어로 문장을 구성할 경우 미등록어 수가 감소할 것이라 예상하였다. 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델을 제안하며 이를 SVM과 전방향 뉴럴 네트워크 구조에 적용하여 정치적 편향성 분류 실험을 진행하였다. 형태소 토큰화 기법을 이용한 문서 임베딩 모델과 비교 실험한 결과, 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델이 78.22%로 가장 높은 정확도를 보였으며 부분 단어 토큰화를 통해 미등록어 수가 감소되는 것을 확인하였다. 분류 실험에서 가장 성능이 좋은 임베딩 모델을 이용하여 정치적 인물을 기반한 어휘를 추출하였으며 각 성향의 정치적 인물 벡터와의 평균 유사도를 통해 어휘의 편향성을 검증하였다.
사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.
이 연구는 프레임 개념과 편향성 개념을 통합적으로 연결해 재난 사고 뉴스의 정치사회적 의미를 해석했다. 국내 언론이 세월호 침몰 사고라는 특수한 재난 사고의 문제 정의, 원인 해석, 도덕적 평가, 그리고 사후 처방을 제시하는 과정에 어떤 프레임을 더 편향되게 배치했는지를 이론적으로 검정해 보았다. 또한 프레임의 편향성이 정치적 이념을 달리하는 보수 신문과 진보 신문 간에 어떤 차이가 있는지 비교 분석해 보았다. 내용 분석 결과를 제시하면 다음과 같다. 첫째, 세월호 사고 진단 프레임에서는 전체적으로 파편화>개인화>권위무질서>극화의 순으로 편향되어 있었다. <조선일보>는 파편화 편향성이, 한겨레는 권위무질서 편향성이 상대적으로 컸다. 둘째, 사고 평가에서는 책임 프레임>도덕적 프레임>문제 해결 프레임>사고 원인 프레임의 순으로 편향되어 나타났다. <조선일보>는 책임 프레임, 도덕적 프레임 편향적으로 사고를 평가했다. <한겨레>는 책임 프레임, 문제 해결 프레임 편향성이 두드러졌다. 셋째, 책임 소재 프레임에서는 정부>개인>조직의 순으로 편향되어 제시됐다. <조선일보>는 정부와 개인의 책임 편향성을 드러낸 반면에, <한겨레>는 상대적으로 정부에 책임을 더 강조하면서 조직에 대한 책임 편향성도 보였다. 넷째, 문제 해결 프레임에서는 전체적으로 주제적 프레임과 일화적 프레임 편향성이 엇비슷한 수준으로 나타났다. <조선일보>는 일화적 프레임으로, <한겨레>는 주제적 프레임으로 더 편향화하는 차이를 보였다. 세월호 사고의 평가와 해석에 대한 언론의 프레임 편향성과 함께 이념적 차이에 따른 언론 간의 편향성 차이를 사회적 맥락 차원에서 토론했다.
문서에서 저자의 의도와 주제, 그 안에 포함된 감성을 분석하는 것은 자연어 연구의 핵심적인 주제이다. 이와 유사하게 특정 글에 포함된 정치적 문화적 편향을 분석하는 것 역시 매우 의미 있는 연구주제이다. 우리는 최근 발생한 한 사건에 대하여 여러 신문사와 해당 신문사에서 생산한 기사를 중심으로 해당 글의 정치적 편향을 정량화 하는 방법을 제시한다. 그 방법은 선택된 주제어들의 문장 공간에서의 거리를 중심으로 그래프를 생성하고, 생성된 그래프의 기계학습을 통하여 편향과 특징을 분석하였다. 그리고 그 그래프들의 시간적 변화를 추적하여 특정 신문사에서 특정 사건에 대한 입장이 시간적으로 어떻게 변화하였는지를 동적으로 보여주는 그래프 애니메이션 시스템을 개발하였다. 실험을 위하여 최근 이슈에 대하여 12개의 신문사에서 약 2000여 개의 기사를 수집하였다. 그 결과, 약 82%의 정확도로 일반적으로 알려진 정치적 편향을 예측할 수 있었다. 또한, 학습 데이터에 쓰이지 않은 신문기사를 활용하여도 같은 정도의 정확도를 보임을 알 수 있었다. 우리는 이를 통하여 신문기사에서의 정치적 편향은 작성자나 신문사의 특성이 아니라 주제어들의 문장 공간에서의 거리 관계로 특성화할 수 있음을 보였다. 할 수 있다.
이 연구에서는 필터버블 현상의 주요 요인인 추천 알고리즘의 정치적 편향성(추천 알고리즘이 이용자가 선호하는 정치 성향의 영상을 제한적으로 제공하는 것)과, 이용자들의 선택적 노출(이용자가 자신이 선호하는 정치 성향의 영상을 자발적으로 선택하는 것)을 실증적으로 검증하고자 하였다. 이를 위해 새로운 유튜브 계정 2개를 개설하여 각각의 계정을 보수/진보 계정으로 일주일 동안 훈련시켰고, 각 계정에서 추천받은 영상들은 이틀 간격으로 수집하였다. 텍스트 마이닝(Text Mining) 방법을 통해 보수 계정에서는 보수 성향의 영상이 더욱 추천되는지, 진보 계정에서는 진보 성향의 영상이 더욱 추천되는지를 알아보았다. 또한 각각의 계정에서 정치적으로 편향된 주제들이 다뤄지고 있는지를 관찰하였다. 설문조사를 통해 유튜브로 정치 및 뉴스 영상을 소비하는 이용자들에게 보수/진보 계정에서 6일째에 추천된 영상 리스트를 제공하여 이용자들이 선택적 노출을 보이는지를 알아보았다. 연구결과, 시간이 지날수록 보수 계정에서는 보수 성향의 영상과 채널이 더욱 추천되고, 진보 계정에서는 진보 성향의 영상과 채널이 더욱 추천되었으며, 보수 계정과 진보 계정에서 추천된 영상들은 대부분 정치적으로 편향된 주제를 다루고 있는 것으로 나타났다. 응답자들의 약 77%는 자신이 선호하는 정치 성향의 영상에 선택적으로 노출되어 보이는 것으로 나타났다.
이 연구는 부산지역 공공도서관의 사회사를 추적하는 과정에 나타난 <도서변상사건>과 <금서사건>이 장서의 축적 과정에 미친 영향을 현상학적으로 분석한 것이다. 도서관의 장서는 그 도서관이 추구하는 목적과 이용자의 요구를 두 축으로 하여 축적되는 것이 원칙이지만, 우리 나라 공공도서관의 경우 사회${\cdot}$정치적인 상황이 오히려 더 큰 영향을 미쳐왔다고 볼 수 있다. <도서변상사건>과 <금서사건>은 이런 사회 정치적인 상황이 도서관에 발현된 대표적인 사례라 할만하다. 이들 사건은 공공도서관 직원들의 창의성을 말살시키면서 수동적이고 순응적인 성향으로 변질시켜 버리는 결과를 낳았을 뿐만 아니라, 공공도서관의 장서가 편향성을 띤 채 축적될 수밖에 없는 중요한 요인이 되었다고 볼 수 있다.
우리나라는 방송법 등을 통해 방송이 특정정당이나 후보자에 대해 정치적 중립을 유지하도록 하고 있다. 그러나 박근혜 대통령 탄핵과 관련해 MBC와 JTBC는 보수와 진보로 양분돼 보도함으로써 공정성에 대한 논란이 일었다. 이러한 논란을 실증적으로 살펴보기 위해 탄핵이 인용된 날부터 일주일간 양 방송사의 저녁종합뉴스의 아이템 수 변화, 주제의 편향성, 뉴스 프레임을 등 3가지 측면을 분석하였다. 연구결과 JTBC와 MBC의 관련 보도는 양적으로 현저한 차이를 보였고, JTBC는 촛불집회 쪽에, MBC는 태극기집회 쪽 관련 주제를 집중적으로 보도했다. 뉴스 프레임 측면에서 MBC는 탄핵인용 관련 보도에서 박근혜 대통령과 이를 옹호하는 태극기집회 참여자들 쪽에서, JTBC는 반대로 반 박근혜 대통령과 탄핵의 정당성을 주장하는 촛불집회 참여자 입장에서 보도한 것으로 나타났다.
현대 정치에서 매스미디어의 영향력이 확대됨에 따라 방송의 공정성이 중요하게 논의되고 있다. 기존의 연구는 대부분 기계적 공정성만을 추구하는 경향이 있어 이번 연구에서는 정량적 자료와 정성적 자료를 함께 비교하기 위해 AHP 분석방법을 통한 분석을 시도했다. 연구 결과 1계층의 평가항목 중 내용적 균형의 가중치가 상대적으로 높게 나타났으며, 형식적 균형에서는 보도의 순서가 내용적 균형에서는 보도제목이 가장 큰 중요도를 차지하는 지표로 나타났다. 각 방송사별 편향성 비교에서는 MBC가 편향성이 가장 크고 다음이 KBS, SBS순서로 나타났다. 이번 연구는 기존의 공정성 관련 연구가 형식적 분석에 그쳤던 것에 반해 정량적 자료와 정성적인 자료를 하나의 분석틀에서 계량화 하고 이의 정도를 상호 비교할 수 있었다는데 의미가 있다고 할 수 있다.
오늘날의 검색 포털은 뉴스의 창구로서는 가장 큰 비율을 차지하지만, 중립성에 대해서는 의문이 제기되고 있다. 이는 포털 뉴스가 편향된 정보의 소비를 유도할 수 있기 때문이다. 본 논문은 뉴스 기사의 정치적 편향도를 딥러닝을 이용하여 측정하는 방법에 대하여 소개한다. 이는 기사를 비판적으로 바라보는 시각을 뉴스 독자에게 제공할 것이다. 구체적으로, 국회 회의록에서 추출한 키워드에 편향도를 부여하고, 이를 기반으로 기사의 편향도를 분석하여 머신러닝용 데이터를 구축하였다. 최종적으로 순환 신경망과 합성곱 신경망을 융합한 딥러닝을 통해 기사의 편향도를 계산하는 것을 목표로 하였다. 학습한 모델의 정확도를 분석한 결과 문장별 편향의 좌/우편향 판정은 95.6%의 정확도를 보였으나, 신문기사 전체에서는 46.0%의 정확도를 보였다. 이는 기존의 여러 편향성 연구와 다르게 특정 주제에 한정되지 않고 기사의 보수-진보 편향성을 분석할 수 있도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.