• Title/Summary/Keyword: 정착설계식

Search Result 64, Processing Time 0.017 seconds

Estimation of resistance coefficient of PHC bored pile by Load Test II (재하시험에 의한 PHC 매입말뚝의 저항계수 산정 II)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • In Europe and the United States, the use of limit states design has almost been established for pile foundation design. According to the global trend, the Ministry of Land, Transport and Maritime Affairs has established the basic design criteria of the bridge under the limit state design method. However, it is difficult to reflect on the design right now because of lack of research on resistance coefficient of the pile method and ground condition. In this study, to obtain the resistance coefficient of PHC bored pile which is widely used in Korea, the bearing capacity calculated by the LH design standard and the bridge design standard method, the static load test(21 times) and the dynamic load test(EOID 21 times, Restrike 21) The reliability analysis was performed on the results. The analysis of the resistance coefficient of PHC bored pile by loading test was analyzed by adding more than two times data. As a result, the resistance coefficient obtained from the static load test(ultimate bearing capacity) was 0.64 ~ 0.83 according to the design formula and the target reliability index, and the resistance coefficient obtained from the dynamic load test(ultimate bearing capacity) was 0.42~0.55. Respectively. The resistance coefficient obtained from the modified bearing capacity of dynamic load test(EOID's ultimate end bearing capacity + restrike's ultimate skin bearing capacity) was 0.55~0.71, which was reduced to about 14% when compared with the resistance coefficient obtained by the static load test(ultimate bearing capacity). As a result of the addition of the data, the resistivity coefficient was not changed significantly, even if the data were increased more than 2 times by the same value or 0.04 as the previous resistance coefficient. In conclusion, the overall resistance coefficient calculated by the static load test and dynamic load tests in this study is larger than the resistance coefficient of 0.3 suggested by the bridge design standard(2015).

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Reevaluation of Lane Width Widenings on Horizontal Curve Sections (평면곡선부 확폭량 재설정에 관한 연구)

  • 최재성;백종대
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.51-62
    • /
    • 2000
  • The objective of this study was to reevaluate current Korean design values for lane width widenings on horizontal currie sections and to develop a new method for derivation of design values based on low-speed offtracking. For this purpose, earlier research were reviewed and necessary equations were derived. Also, the method for derivation of widening values of Korea was compared with that for other countries. The result showed that present Korean method could not consider the variation of lane widths and design speeds of roads. In this Paper, to solve such problems, the new concept of widening was developed. That is the current concept of widening which concerns only the dimension of vehicles and radius of curves was replaced by a new concept that lane width widenings on horizontal curve sections is the difference between the width required on curries and tangents. The width required on a curve consists of the swept Path of a vehicle, lateral clearance, and additional allowance. The width of a tangent is calculated by multiplying lane width by the number of lanes The result of applying new concept shows that the values derived from new concept are higher than current design values for curries have same radius. This study was based only on low-speed offtracking. Therefor, it is recommended that further studies which consider the superelevation and high-speed effect on offtracking be made to derive more accurate widening values .

  • PDF