• Title/Summary/Keyword: 정지토압계수

Search Result 22, Processing Time 0.021 seconds

Variations of Coefficient of Earth Pressure at Rest According to Stress Paths for Compacted Residual Soils (다짐 화강풍화토의 응력이력에 따른 정지상태 토압계수의 변화)

  • Lee Byung-Sik;Park Sung-Kook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.85-93
    • /
    • 2005
  • Earth pressures acting on unmovable rigid walls vary according to loading-unloading conditions due to compaction experienced by backfill soil. Appropriate coefficients of earth pressure at rest with considering this influence need to be determined to estimate earth pressures more reasonably.0 this study, a single cycle hysteretic model simulating soil's loading-unloading-reloading behavior under $K_o-condition$ was reproduced by conducting a series of $K_o-triaxial$ test for compacted residual soils. Based on the results, coefficients of earth pressure at rest at each stage of stress paths such as, virgin loading, unloading and reloading were determined. Also, applicabilities of empirical equations to the estimation of the coefficients were evaluated by comparing the experimental results with those estimated by the equations. As a result, it was concluded that the empirical equations could be applied reasonably to the estimation of the coefficients for compacted residual soils in cases where some amount of error might be acceptable for the reloading stage of the hysteretic model.

A Method Evaluating K0 of Granular Soil using DMT (DMT를 이용한 사질토 정지토압계수 평가방법)

  • Choi, Sung-Kun;Lee, Moon-Joo;Bae, Kyung-Doo;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4C
    • /
    • pp.193-200
    • /
    • 2010
  • This study suggests a method predicting at-rest coefficient of earth pressure ($K_0$) in order to evaluate the effect of stress history of granular soil. The method is based on the relation $K_D/K_0={\chi}(E_D/{\sigma}_m{^{\prime}})^{\delta}$, which is developed by combining two previously published relations such as $E_D/{\sigma}_m{^{\prime}}-{\psi}$ and $K_D/K_0-{\psi}$. As $K_D$ and $E_D$ are observed to be sensitive to the pre-stress, both indices are adopted for the estimation of $K_0$ value of granular soil. It is shown that the proposed $K_D/K_0-E_D/{\sigma}_m{^{\prime}}$ relation is insignificantly affected by the stress history. It is concluded from the comparative study that the proposed method, which uses only dilatometer test results to predict the $K_0$ of granular soil, provides more convenient and reliable prediction than other methods which use both CPT and DMT results.

A Study on the Development of Measuring Equipment for Coefficient of Earth Pressure at Rest (정지토압계수의 측정장치 개발에 관한 연구)

  • Song, Mu-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.159-167
    • /
    • 1999
  • For exisiting $K_0$-oedometer, the lateral wall of the ring is cut thinly to make space and by filling the space with space with water or mercuty to keep the balance to the lateral pressure of a specimen, the pressure of the fluid is checked for the pressure of the specimen. But the devices to keep the balance to the lateral pressure of a specimen are complicated, difficult to manufacture and expensive. As newly developed $K_0$-oedometer is equipped with the load cell which can resist higher pressute than the lateral pressure of the specimen, there is nearly no deformation due to the lateral pressure of the specimen. And the measuting is cheap and easy as there are fewer accessories.

  • PDF

Influence Factors on the Degree of Soil Plugging for Open-Ended Piles (개단말뚝의 폐색효과 영향인자 분석)

  • Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.27-36
    • /
    • 2016
  • This paper presents the investigation of the major influence factors on the degree of soil plugging for open-ended piles based on the Coupled Eulerian-Lagrangian (CEL) numerical technique. The main objective of this study was to investigate the effect of soil plugging on the response of piles in various conditions. Through comparison of the results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement. Additionally, the parametric studies were performed by controlling the soil conditions, soil elastic moduli, end-bearing conditions and multi layers. It was found that the degree of soil plugging for sand layers was greater than that of clay layers. Also, the degree of soil plugging increased with an increase in both the soil stiffness and length of pile embedded in the bearing layer.

Behaviour of Dry Sand under $K_o$-Loading/unloading Conditions(I) : Single-Cyclic Test ($K_o$-재하/제하에 의한 건조모래의 거동(I): 단주기 시험)

  • 송무효;남선우
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-102
    • /
    • 1994
  • For estimation of Ko value depending upon the stress history of dry sand, a new type of Ko oedometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic Ko loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows Kon, the coefficient of earth pressure at rest for virgin loading is a function of the angle of internal friction of the sand and is determined as Kon=1-0.914 sin, Kou the coefficient of earth pressure at -rest for virgin unloading is a function of K. and overconsolidation ratio(OCR), and is determined as Kou : Kon(OCR)". The exponent u, increases as the relative density increases. Ko,, the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, cv', increases. And, the stress path at virgin reloading lends to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, mr, increases as OCR increases.ases.

  • PDF

Estimation of Earth Pressures Acting on Box Structures Buried in Ground (지중에 매설된 박스구조물에 작용하는 토압 산정)

  • Hong, Won-Pyo;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2015
  • The earth pressure acting on underground structure was measured by application of the instrumentation system in the subway construction site constructed by the method of cut-and-cover tunnel. The measured earth pressure was compared with the earth pressure obtained from the existed theoretical equation, and the actual earth pressure diagram acting on the underground structure was investigated. As a result of investigation, the vertical earth pressure is mainly affected by the embankment height, and the lateral earth pressure is significantly affected by whether the existence of earth retaining structures or not. The measured vertical earth pressure is very similar to the theoretical earth pressure proposed by Bierbaumer. The measured lateral earth pressure is closed to the active earth pressure proposed by Rankine rather than the earth pressure at rest. The coefficient of earth pressure in soil deposit layer is about 0.35, and the coefficient in soft rock deposit layer is about 0.21. For design and construction the underground structures, therefore, it is reasonable estimation that the lateral earth pressure acting on structures installed in soil deposit layers is an average value between active earth pressure and earth pressure at rest. In rock deposit layers, the lateral earth pressure acting on structure is an active earth pressure only.

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

A Study on Measuring the Coefficient of Earth Pressure at Rest II (정지토압계수 측정에 관한 연구 II)

  • SONG MU-HYO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.58-69
    • /
    • 2004
  • In order to investigate the characteristics of the lateral earth pressure at rest, under hysteretic $K_o-loading/unloading$ conditions, seven types of multi-cyclic models have been studied, using dry sand. For this study, the new type of $K_o-oedometer$ apparatus was developed, and the horizontal pressure was accurately measured. The multi-cyclic models consist of primarily 3 cases: (i) $K_o-test$ under the same loading / unloading condition, (ii) multi-cyclic loading / unloading $K_o-test$ exceeding the maximum pre-vertical stress, and (iii) multi-cyclic loading / unloading $K_o-test$ within the maximum pre-vertical stress. Results fromthe multi-cyclic model indicated that a single-cyclic model could be extended if the exponents for the unloading condition $(\alpha\;and\;\alpha^*)$ and the reloading coefficients $(m_r,\;and\;m_r^{\ast})$ were primarily dependent upon the type of model, number of cycles, and the relative density.

Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement (측방유동지반속 지중매설관에 작용하는 토압식 산정)

  • 홍원표;한중근;배태수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.55-65
    • /
    • 2002
  • Model tests were performed to investigate the mechanism of lateral earth pressure on a buried pipe, which was installed in a plastic flowing soil mass undergoing lateral movement. On the basis of failure mode tests, the equation of lateral earth pressure to apply Maxwell's visco-elastic model was proposed to consider the soil deformation velocity. Through a series of model tests of differential soil deformation velocity, lateral earth pressure of theoretical equation was compared with experimental results. When lateral soil movement was raised, the lateral earth pressure acting on buried pipe increases linearly with the soil deformation velocity. It shows that the lateral earth pressure on buried pipe is largely affected by soil deformation velocity. When plastic soil movement was raised, lateral earth pressure predicted by theoretical equation showed good agreement with experimental results. Also, coefficient of viscosity by theoretical equation had a good agreement with direct shear test results.