• Title/Summary/Keyword: 정지위성

Search Result 608, Processing Time 0.023 seconds

A Protocol Conversion Mechanism between Terrestrial and Satellite Communication Links (지상망과 위성망간의 특성 차이를 고려한 프로토콜 변환 방식에 관한 연구)

  • 이병일;원유헌;송하윤;서학금
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.553-555
    • /
    • 2004
  • 본 연구는 정지궤도 위성 환경에서 지상망과 위성망 간의 특성 차이로 인해 필수적으로 행해져야 하는 프로토콜의 변환에 대한 연구이다. 정지궤도 위성 환경은 높은 에러율과 큰 지연시간을 가진다. 또한 기존 지상망과 위성망 간의 높은 전송 지연 차이에 따른 버퍼 혼잡으로 인한 데이터의 손실을 피할 수 없다. 따라서 본 연구에서는 상이한 링크가 혼재된 데이터 네트워크에서 각 링크를 특성에 따라 분할하여 구간별로 독립적인 데이터 전송 및 재전송을 수행하도록 하며 전체적인 데이터 전송 처리량을 향상시키는 Spoofing 기술 및 기존 TCP 프로토콜을 대신하여 위성 프로토콜인 STP(Satellite Transport Protocol)을 적용한 PEP (Performance Enhancing Proxy) 분할 연결을 연구하였다.

  • PDF

Mechanical System Design of the COMS (통신해양기상위성의 기계 시스템 설계)

  • Park, Jong-Seok;Kim, Chang-Ho;Kim, Seong-Hun;Choe, Jeong-Su
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • The first GEO satellite, COMS(Communication. Ocean & Meteorological Satellite) developed by Korean participants is a multi-functional satellite accommodating two observation payloads and a communication payload. Because of the inherent requirements given by these payloads, the physical layout of the instruments and sensors and of their electronics packages is critical to mission success. This technical paper presents an overview of the mechanical system design during the preliminary design phase and describes the design consideration to achieve the optimized performance.

  • PDF

Characteristics of the Mission Planning for COMS Normal Operation (천리안위성 정규 운영에 대한 임무계획 특성)

  • Cho, Young-Min;Jo, Hye-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.163-172
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2^{\circ}$ East longitude on the geostationary orbit and currently under normal operation service since April 2011. For the sake of the executions of the meteorological and the ocean mission as well as the satellite control and management, the satellite mission planning is daily performed. The satellite mission plans are sent to the satellite by the real-time operation and the satellite executes the missions as per the mission plans. In this paper the mission planning for COMS normal operation is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, and seasonal mission planning activities. The successful mission planning is also confirmed with the first one-year normal operation results.

A STUDY ON THE TRACKING AND POSITION PREDICTIONS OF ARTIFICIAL SATELLITE(II) - A Study on the Orbit Prediction - (인공위성 궤도의 추적과 예보의 기술개발(II) -궤도예보에 관하여-)

  • 박필호;김천휘;신종섭;이정숙;최규홍;박재우
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.99-113
    • /
    • 1991
  • We developed a software system called IODS(ISSA Orbit Determination System), which can predict the orbit of arbitary artificial satellite using the numerical method. For evaluating the orbit prediction accuracy of IODS, the orbital data predicted for the meteorological satellite NOAA-11 and the stationary satellite INTELSAT-V are intercompared with those tracked at the Central Bureau of Meterology and the Kum-San Satellite Communication Station. And the Perturbations affecting the orbit of these artificial satellites are quantitatively analyzed. The orbital variation and the eclipse phenomina due to the shadow are analyzed for a hypothetical geostationary satellite called KORSAT-1 which is assumed to be located in longitude $110^{circ}E$.

  • PDF

A Survey of the Current Components of Bipropellant Propulsion System for Geosynchronous Satellites (정지궤도 인공위성용 이원추진시스템 부품 조사)

  • Chae, Jong-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.82-89
    • /
    • 2008
  • In this paper a survey was conducted to find out the current components of bipropellant propulsion system for geosynchronous satellites. The purpose of the survey is to list up the alternative components corresponding to the components of chemical propulsion system (CPS) of the communication, ocean, and meteorological satellite (COMS), so that the criterion of survey is whether the alternative components can be applicable to COMS CPS or not. The survey results are described in component-by-component way and the short descriptions of each component and its companies are added. This paper can be useful for beginning a market survey and have a good understanding of the components of bipropellant propulsion system.

  • PDF

Systemic Ground-Segment Development for the Geostationary Ocean Color Imager II, GOCI-II (정지궤도 해양관측위성 지상시스템 개발)

  • Han, Hee-Jeong;Yang, Hyun;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.171-176
    • /
    • 2017
  • Recently, several information-technology research projects such as those for high-performance computing, the cloud service, and the DevOps methodology have been advanced to develop the efficiency of satellite data-processing systems. In March 2019, the Geostationary Ocean Color Imager II (GOCI-II) will be launched for its predictive capability regarding marine disasters and the management of the fishery environment; moreover, the GOCI-II Ground Segment (G2GS) system for data acquisition/processing/storing/distribution is being designed at the Korea Ocean Satellite Center (KOSC). The G2GS is composed of the following six functional subsystems: data-acquisition subsystem (DAS), data-correction subsystem (DCS), precision-correction subsystem (PCS), ocean data-processing subsystem (ODPS), data-management subsystem (DMS), and operation and quality management subsystem (OQMS). The G2GS will enable the real-time support of the GOCI-II ocean-color data for government-related organizations and public users.