• Title/Summary/Keyword: 정지궤도 해색위성

Search Result 34, Processing Time 0.02 seconds

Creating Atmospheric Scattering Corrected True Color Image from the COMS/GOCI Data (천리안위성 해양탑재체 자료를 이용한 대기산란 효과가 제거된 컬러합성 영상 제작)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • The Geostationary Ocean Color Imager (GOCI), the first geostationary ocean color observation instrument launched in 2010 on board the Communication, Ocean, and Meteorological Satellite (COMS), has been generating the operational level 1 data. This study describes a methodology for creating the GOCI true color image and data processing software, namely the GOCI RGB maker. The algorithm uses a generic atmospheric correction and reprojection technique to produce the color composite image. Especially, the program is designed for educational purpose in a way that the region of interest and image size can be determined by the user. By distributing software to public, it would maximize the understanding and utilizing the GOCI data. Moreover, images produced from the geostationary observations are expected to be an excellent tool for monitoring environmental changes.

Missions and User Requirements of the 2nd Geostationary Ocean Color Imager (GOCI-II) (제2호 정지궤도 해양탑재체(GOCI-II)의 임무 및 요구사양)

  • Ahn, Yu-Hwan;Ryu, Joo-Hyung;Cho, Seong-Ick;Kim, Suk-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.277-285
    • /
    • 2010
  • Geostationary Ocean Color Imager(GOCI-I), the world's first space-borne ocean color observation geostationary satellite, will be launched on June 2010. Development of GOCI-I took about 6 years, and its expected lifetime is about 7 years. The mission and user requirements of GOCI-II are required to be defined at this moment. Because baseline of the main mission of GOCI-II must be defined during the development time and early operational period of GOCI-I. The main difference between these missions is the global-monitoring capability of GOCI-II, which will meet the necessity of the monitoring and research on climate change in the long-term. The user requirements of GOCI-II will have higher spatial resolution, $250m{\times}250m$, and 12 spectral bands to fulfill GOCI-I's user request, which could not be implemented on GOCI-I for technical reasons. A dedicated panchromatic band will be added for the nighttime observation to obtain fishery information. GOCI-II will have a new capability, supporting user-definable observation requests such as clear sky area without clouds and special-event areas, etc. This will enable higher applicability of GOCI-II products. GOCI-II will perform observations 8 times daily, the same as GOCI-I's. Additionally, daily global observation once or twice daily is planned for GOCI-II. In this paper, we present an improved development and organization structure to solve the problems that have emerged so far. The hardware design of the GOCI-II will proceed in conjunction with domestic or foreign space agencies.

Data Processing System for the Geostationary Ocean Color Imager (GOCI) (천리안해양관측위성을 위한 자료 처리 시스템)

  • Yang, Hyun;Yoon, Suk;Han, Hee-Jeong;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.74-79
    • /
    • 2017
  • The Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in a geostationary orbit, can be utilized to mitigate damages by monitoring marine disasters in real time such as red tides, green algae, sargassum, cold pools, typhoons, and so on. In this paper, we described a methodology and procedure for processing GOCI data in order to maximize its utilization potential. The GOCI data processing procedure is divided into data reception, data processing, and data distribution. The kinds of GOCI data are classified as raw, level 1, and level 2. "Raw" refers to an unstructured data type immediately generated after reception by satellite communications. Level 1 is defined as a radiance data type of two dimensions, generated after radiometric and geometric corrections for raw data. Level 2 indicates an ocean color data type from level-1 data using ocean color algorithms.

Introduction to Image Pro-processing Subsystem of Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 전처리시스템)

  • Seo, Seok-Bae;Lim, Hyun-Su;Ahn, Sang-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.167-173
    • /
    • 2010
  • This paper introduces Geostationary Ocean Color Imager, IMage Pre-processing Subsystem (GOCI IMPS) of Communication, Ocean, and Meteorological Satellite (COMS), and describes its functions, development states, and operational concepts. The primary and backup systems of GOCI IMPS have been installed in Korea Ocean Satellite Center (KOSC) and Satellite Operation Center (SOC) and the system are the prelaunch test phase after completing all required tests. It is expected that the GOCI data observed continuously over the Korea Peninsular in the geostationary orbit will be usefully utilized in marine environment research fields such as sea surface temperature changes or marine ecosystems.

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

Development of the diffuse attenuation coefficient for down-welling irradiance ($K_d$) algorithm around the Korean Sea (우리나라 해역 특성에 맞는 수중에서의 하향 방향의 감쇠계수 알고리즘 ($K_d$ algorithm) 개발)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.204-209
    • /
    • 2007
  • 수중에서의 하향 방향의 감쇠 계수 (Diffuse attenuation coefficient of down-welling irradiance, $K_d$)에 대한 연구는 상충 해양에 대한 열전달 수중에서의 광합성 및 다른 생물학적 과정에 대한 연구,해양 일차 생산력 추정, 대양 및 연안에서의 탁도 추정 등에 대한 연구의 보조 자료로서 해양원격탐사를 포함한 해양에 대한 연구에 매우 중요한 요소이다. 우리나라는 세계 최초의 정지궤도 해색 센서인 Geostationary Ocean Color Imager (GOCI)를 2008년 말에 통신해양기상위성 (COMS, Communication Ocean and Meteorological Satellite)에 탑재하여 쏘아 올릴 계획에 있다. 이 센서는 매일 한 시간 간격으로 한반도 주변 해역을 8회 이상 관측할 계획에 었다. 따라서 기존의 해색 센서들에 비해서 시간 해상도가 향상되기 때문에 해양 환경 모니터링에 있어서 많은 도움이 될 것으로 예상된다. 본 연구에서는 앞으로 운영될 GOCI 센서에 대한 수중에서의 하향 방향의 감쇠계수 (The diffuse attenuation coefficient of down-welling irradiance, $K_d$) 알고리즘을 현장 관측 값을 이용하여 미리 만들어 보고 이를 현재의 대표적인 해색 센서인 SeaWiFS 영상의$K_d$(490) product와 비교하여 보았다.

  • PDF

An Efficient Super Resolution Method for Time-Series Remotely Sensed Image (시계열 위성영상을 위한 효과적인 Super Resolution 기법)

  • Jung, Seung-Kyoon;Choi, Yun-Soo;Jung, Hyung-Sup
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.29-40
    • /
    • 2011
  • GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.

Establishment Status of the Korea Ocean Satellite Center and GOCI-Data Distribution System (해양위성센터 구축 현황 및 GOCI 자료배포시스템 소개)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Cho, Seong-Ick;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.367-370
    • /
    • 2009
  • 한국해양연구원에서는 2009년 발사 예정인 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite)의 해색센서인 정지궤도 해양위성(GOCI: Geostationary Ocean Color Imager) 데이터의 수신, 처리, 배포를 위한 해양위성센터(KOSC: Korea Ocean Satellite Center)를 구축하고 있다. 2005년 "해양위성센터 구축사업"의 시작으로, 전파 수신 환경 등의 조건을 고려하여, 안산에 위치한 한국해양연구원 본원으로 해양위성센터의 위치를 최종 확정하여 구축을 진행하고 있다. 2009년 3월 현재 수신시스템(GDAS: GOCI Data Aquisition System), 자료전처리시스템(IMPS: Image Pre-processing System), 자료처리시스템(GDPS: GOCI Data Processing System), 자료관리 시스템(DMS: Data Management System), 통합감시제어시스템(TMC: Total Management & Controlling System), 기관간 자료교환시스템(EDES: External Data Exchange System) 등이 구축 완료되었고, 위성자료 배포시스템(DDS: Data Distribution System)을 구축하고 있다. 고용량 데이터의 원활한 전송을 위한 데이터센터를 비롯하여 사용자관점에서의 시스템 구축을 추진하고 있으며, 위성 발사 후 사용자 등록을 시작할 계획이다.

  • PDF

Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique (GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Unuzaya, Enkhjargal;Bak, Su-Ho;Hwang, Do-Hyun;Jeong, Min-Ji;Kim, Na-Kyeong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1089-1098
    • /
    • 2020
  • In this study, we propose a method to detect red tide Cochlodinium Polykrikoide using by machine learning and geostationary marine satellite images. To learn the machine learning model, GOCI Level 2 data were used, and the red tide location data of the National Fisheries Research and Development Institute was used. The machine learning model used logistic regression model, decision tree model, and random forest model. As a result of the performance evaluation, compared to the traditional GOCI image-based red tide detection algorithm without machine learning (Son et al., 2012) (75%), it was confirmed that the accuracy was improved by about 13~22%p (88~98%). In addition, as a result of comparing and analyzing the detection performance between machine learning models, the random forest model (98%) showed the highest detection accuracy.It is believed that this machine learning-based red tide detection algorithm can be used to detect red tide early in the future and track and monitor its movement and spread.

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 해수환경분석 알고리즘 개발)

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Shanmugam, Palanisamy
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.189-207
    • /
    • 2010
  • Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter ($a_{dom}$), and remote sensing reflectance ($R_{rs}$) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI $a_{dom}$ algorithm was derived from the relationship between remote sensing reflectance band ratio ($R_{rs}(412)/R_{rs}(555)$) and $a_{dom}(\lambda)$). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula.