• 제목/요약/키워드: 정지궤도복합위성

검색결과 63건 처리시간 0.026초

테이블 기반 알고리즘을 이용한 CRC8의 구현 (CRC8 Implementation using Direct Table Algorithm)

  • 서석배;김영선;박종억;공종필;용상순;이승훈
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.38-46
    • /
    • 2014
  • CRC (Cyclic Redundancy Codes)는 데이터 전송 시 오류 발생 유무를 검출하기 위한 하나의 방법으로, 정지궤도복합위성(GEO-KOMPSAT 2B) 개발에서는 정지궤도환경탑재체와 위성 간의 GRDDP (GOES-R Reliable Data Delivery Protocol)에 사용되고 있다. 본 논문에서는 CRC를 구현할 때 널리 사용하는 테이블 기반 CRC의 원리를 소개하고, 이를 기반으로 환경탑재체 개발에서 사용 중인 CRC8을 소프트웨어로 구현한 결과를 설명한다.

통신해양기상위성 관제시스템 설계 (Design of the COMS Satellite Ground Control System)

  • 이병선;정원찬;이상욱;이점훈;김재훈
    • 한국위성정보통신학회논문지
    • /
    • 제1권2호
    • /
    • pp.16-24
    • /
    • 2006
  • 복합임무를 갖는 정지궤도 위성인 통신해양기상위성은 항공우주연구원, 전자통신연구원, 해양연구원, 기상청과 국내외 기업이 공동으로 개발을 수행하고 있다. 통신해양기상위성의 주 계약자는 EADS Astrium이며 전자통신연구원은 정보통신부의 재원으로 Ka 대역 통신탑재체와 지상 관제시스템을 개발하고 있다. 통신해양기상위성의 관제시스템은 궤도상의 위성을 감시하고 제어할 수 있는 유일한 시스템이다. 통신해양기상위성에 탑재되어 있는 세개의 탑재체와 위성체 버스에 대한 임무운용을 위해서 지상 관제시스템은 원격측정 신호의 수신과 처리, 위성의 추적과 거리측정, 원격명력의 생성 및 송출, 위성의 임무계획, 비행역학데이터 처리, 그리고 위성 시뮬레이션을 수행한다. 이와 같은 기능을 적절히 할당해서 통신해양기상위성의 관제시스템은 TTC, 실시간운영, 임무계획, 비행역학, 그리고 위성시뮬레이터와 같은 5개의 서브시스템으로 구성되었다. 본 논문에서는 통신해양기상위성 관제시스템을 구성하는 5 개의 서브시스템에 대한 기능 설계와 인터페이스를 기술한다.

  • PDF

DVB-S2 표준을 적용한 정지궤도복합위성 UHRIT 통신 개념설계 (Conceptual Design of GK2A UHRIT Broadcasting using DVB-S2)

  • 박덕종;임현수;안상일
    • 항공우주기술
    • /
    • 제12권2호
    • /
    • pp.156-162
    • /
    • 2013
  • 위성과 지상국 간의 데이터 전송속도는 전달해야 하는 데이터의 용량과 요구되는 전송시간에서 계산되는데, 이러한 전송속도는 가용한 대역폭에 의해 제약을 받게 된다. 따라서 디지털 영상 서비스와 같은 대용량의 데이터 통신이 필요한 분야에서는 대역폭 효율이 우수한 전송 방식에 대해 많은 연구가 수행되었다. 본 논문에서는 정지궤도 복합위성 UHRIT 신호 전송의 개념 설계를 위하여 대역폭 효율이 우수한 통신 방식인 DVB-S2 표준을 적용한 결과를 설명한다. 최근에 결정된 UHRIT 전송속도에 31Mbps에 따라서, DVB-S2에서 지원되는 변조 방식 및 부호율에 대한 URIT 대역폭을 계산하였다. 또한 가능성 있는 주파수 대역의 조합에 대해 GK2A위성의 빔 커버리지 내에 위치하는 사용자 안테나 시스템의 수신 링크 마진을 분석하였다. 끝으로 천리안 위성에서 사용되는 L-Band HRIT의 대역폭인 5.2MHz을 대체 활용하여 UHRIT을 전송할 경우에 DVB-S2의 각 모드 별 최대 전송속도 및 사용자 안테나에서 요구되는 G/T를 산출하였다.

천리안위성 궤도상 시험의 지구 관측 임무 운영 (Earth Observation Mission Operation of COMS during In-Orbit Test)

  • 조영민
    • 한국위성정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.89-100
    • /
    • 2013
  • 통신, 해양, 기상의 세 분야 복합 임무를 수행하는 천리안위성(Communication Ocean Meteorological Satellite: COMS)이 2010년 6월 27일 지구정지궤도로 발사된 이후 궤도상시험을 마치고 현재 정상운영 임무를 수행하고 있다. 천리안위성은 정지궤도의 동경 $128.2^{\circ}$에 위치한다. 세 임무를 수행하기 위해 천리안위성에는 3가지 탑재체인 기상탑재체(Meteorological Imager: MI), 해양탑재체(Geostationary Ocean Color Imager: GOCI), 통신탑재체(Ka-band Antenna)가 실려 있다. 각 탑재체는 각각의 임무를 전담하여 수행한다. 기상탑재체(MI)와 해양탑재체(GOCI)는 각각 기상 관측과 해양 모니터링을 위한 지구 관측 임무를 수행한다. 궤도상시험 기간 동안 천리안위성과 지상국의 기능과 성능이 지구 관측 임무 운영을 통해 점검되었다. 지구 관측 임무는 지구의 여러 영역에 대한 기상 현상 관측과 한반도 주변의 해양 환경 모니터링으로 구성된다. 천리안위성 궤도상시험에 대한 기상 및 해양 임무 운영 특성을 기술하고 천리안위성 임무 계획에 대해 논하였다. 궤도상시험 임무 운영 결과로서 시험 기간 동안의 임무 계획 결과와 위성 영상 수신 상황에 대한 통계 분석 및 종합 결과를 제시하여 궤도상시험에서 검증된 천리안위성의 임무 운영 능력과 달성된 위성 영상 수신 역량을 연구하였다.

천리안 위성통신시스템과 관제시스템의 개발 및 활용 (Development and Application of COMS Communication Payload and Satellite Ground Control System)

  • 조진호;이병선;이성팔;김재훈;안도섭
    • 전자통신동향분석
    • /
    • 제26권4호
    • /
    • pp.90-104
    • /
    • 2011
  • 천리안 위성은 우리나라 최초의 정지궤도 복합위성으로 국내의 여러 국책연구기관이 공동으로 참여하였다. 천리안 위성 프로그램에서 ETRI는 천리안 위성의 통신탑재체 개발 및 위성관제시스템 개발을 담당하였다. 천리안 위성은 2010년 6월 27일 성공적으로 발사되어 1년이 지난 현재까지 무사히 본래의 임무를 수행 중이다. 본 지면에서는 ETRI가 개발하여 천리안 위성에 실은 통신탑재체의 개발과정과 위성을 감시 제어하는 관제시스템의 개발과정에 대하여 살펴보기로 한다.

  • PDF

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • 백명진;박재우
    • 한국위성정보통신학회논문지
    • /
    • 제2권2호
    • /
    • pp.29-35
    • /
    • 2007
  • 통신해양기상위성은 다목적 정지궤도위성으로서 Ka대역 통신탑재체, 기상센서 및 해양센서를 하나의 위성플랫폼에 탑재한 복합위성이다. 본 논문에서는 한국정부의 자금으로 개발되는 첫번째 혁신적인 정지궤도 통신해양기상위성 프로그램에 대해서 소개하고자 한다. 위성플랫폼은 아스트리움의 EUROSTAR 3000 통신위성을 기반으로 하고 있으며, 세 개의 다른 탑재체를 효과적으로 수용하기 위하여 화성탐사선 Express를 일부 활용하였다. 세개의 탑재체 중 통신탑재체는 스위칭 다중빔 기술을 검증하고 광대역 멀티미디어 통신서비스를 시험하는데 목적이 있다. 기상센서임무는 고해상도 멀티분광 센서로 지속적으로 한반도 기상데이타를 산출하는데 있으며, 세계 최초의 정지궤도 해양센서는 한반도의 어류자원정보 및 장단기 해양정보의 모니터링을 목적으로 하고 있다. 통신임무와 원격탐사임무를 동시에 수행해야 하므로 위성체의 요구사항은 매우 복잡하여 이를 만족시키기 위한 설계 및 조립/시험의 난이도는 매 우 높다고 할 수 있겠다.

  • PDF

환경위성지상국 시스템 가용도 예측분석 연구 (A study on the availability prediction analysis for the Environmental Satellite Earth Station)

  • 은종원;최원준;이은규
    • 한국위성정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.107-112
    • /
    • 2015
  • 본 논문에서는 정지궤도 복합위성 2B에 대한 환경위성지상국 시스템의 성능지표의 하나인 가용도를 예측하기 위한 H/W 및 S/W 시스템 가용도의 수학적 모델링을 제시하고, 직렬연결 시스템에 대한 가용도 예측 방법을 제시하였다. 또한, 본 논문에서는 환경위성 지상국 시스템의 가용도 예측 결과를 산출하였으며, 그 가용도 예측 결과는 0.998072로 분석 되었다.

COMS 해양탑재체의 비선형성 특성 분석 (Analysis of Non-linearity Characteristic of GOCI)

  • 강금실;윤형식
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.1-7
    • /
    • 2009
  • 세계최초의 정지궤도 해양탑재체인 GOCI(Geostationary Ocean Color Imager)는 정지궤도 복합위성인 COMS(Communication, Ocean, and Meteorological Satellite)에 기상탑재체, 통신탑재체와 함께 탑재되기 위해 개발되고 있다. 본 논문에서는 부분품 레벨의 응답특성을 이용한 탑재체 레벨의 복사모델 수립방법을 소개하며, 복사모델을 이용하여 각 채널의 비선형성 특성을 분석한다. 또한, 해양탑재체의 복사시험 데이터를 이용하여 각 채널의 비선형 특성을 검증한다. 분석 결과, 선형이득과 비선형이득의 함수로 표현되는 비선형성$G^3$/b는 모든 채널에 대해 동일함을 확인하였다.

  • PDF

천리안 위성 비행소프트웨어 소개 (Introduction to the COMS Flight Software)

  • 강수연;구철회;박수현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.76-79
    • /
    • 2011
  • 천리안 위성은 우리나라 최초의 정지궤도 복합 지구관측 위성으로 기상관측, 해양관측과 통신서비스 임무를 수행하는 중대형위성으로 2011년 6월 27일에 성공적으로 발사되어 약 6개월간의 시험운영기간을 거쳐 현재는 실시간 서비스를 제공하고 있다. 천리안 위성은 한국항공우주연구원(KARI) 총괄 주관하에 2003년 9월 개발을 시작으로 프랑스의 EADS-Astrium과 공동 개발되었다. 천리안 위성은 이미 EADS-Astrium에 의해 통신 위성 본체 플랫폼으로 우주 인증된 Eurostar3000(이하 E3000) 플랫폼을 근간으로 제작되었다. 본 논문에서는 천리안 위성 플랫폼 탑재컴퓨터에 탑재되어 위성체 전반을 운영하는 비행소프트웨어의 구성 및 기능에 대해 기술한다. 또한 기존의 EADS-Astrium사의 E3000 비행소프트웨어 생산라인을 바탕으로 천리안 위성 비행소프트웨어를 개발하기 위한 개발 절차 형상을 소개한다. 본 논문에서 기술한 재생산을 위한 개발 절차에 대한 접근 방법은 위성 임베디드 소프트웨어 시스템과 같은 mission critical 시스템이면서 이미 검증된 소프트웨어를 재사용하고 사용자의 요구사항을 만족시키기 위해 일부 기능을 변경 및 추가 개발하여 통합된 소프트웨어를 생산해야하는 소프트웨어 개발체계의 실질적인 한 예를 보여주고 있다.

천리안 위성의 LEOP기간 동안의 추진계 성능 연구 (A Study on the Performance of COMS CPS during LEOP)

  • 채종원;한조영;유명종
    • 한국항공우주학회지
    • /
    • 제40권3호
    • /
    • pp.258-263
    • /
    • 2012
  • 본 논문은 천리안 위성의 추진계를 간략하게 소개하고 천리안 위성의 발사 및 초기 위성운용 수행 임무 중 위성 추진계의 일련의 과정에서 측정된 원격측정치를 제시한다. 일부 원격측정치는 기 개발된 프로그램의 계산결과와 비교하였다. 추진계의 압력변화는 주로 두단계로 구성된다. 첫 번째 단계는 위성 추진계의 초기화, 즉 안전을 위해서 추진제 탱크 후 단부터 추력기 상단까지 충전된 헬륨 가스를 진공인 우주공간으로 빼는 배출단계를 시작으로, 이 빈 배관망에 산화제와 연료를 각각 채우는 충전단계를 거치고 마지막으로 추진제 탱크의 압력을 일정한 압력까지 올리는 가압단계이다. 두 번째 단계는 목표궤도에 이를 때까지 수행하는 액체원지점엔진의 연소 단계이며, 이 단계에서는 추진제 탱크의 압력을 일정하게 유지 하기 위해서 가압제인 헬륨을 사용한다. 이 프로그램은 향후에 개발되는 정지 궤도복합위성의 기초 설계자료 생성에 사용할 수 있을 것이다.