• Title/Summary/Keyword: 정준형 상관 분석

Search Result 2, Processing Time 0.021 seconds

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.

An Adaptive Time Delay Estimation Method Based on Canonical Correlation Analysis (정준형 상관 분석을 이용한 적응 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.548-555
    • /
    • 2013
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative delay between two or more received signals for the direct signal must be determined. Although the generalized cross-correlation method is the most popular technique, an approach based on eigenvalue decomposition (EVD) is also popular one, which utilizes an eigenvector of the minimum eigenvalue. The performance of the eigenvalue decomposition (EVD) based method degrades in the low SNR and the correlated environments, because it is difficult to select a single eigenvector for the minimum eigenvalue. In this paper, we propose a new adaptive algorithm based on Canonical Correlation Analysis (CCA) in order to extend the operation range to the lower SNR and the correlation environments. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue in the generalized eigenvalue decomposition (GEVD). The estimated eigenvector contains all the information that we need for time delay estimation. We have performed simulations with uncorrelated and correlated noise for several SNRs, showing that the CCA based algorithm can estimate the time delays more accurately than the adaptive EVD algorithm.