• Title/Summary/Keyword: 정적 압축 굽힘 시험

Search Result 6, Processing Time 0.02 seconds

A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage (탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seoung-Hyun
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.24-29
    • /
    • 2009
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties, and the quasi-static point load was applied to introduce the simulated damage on the specimen. The damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation. The both test results showed that the residual strength of the damaged specimen was decreased according to increases of the damaged depth.

금속재 세미 모노코크 콘형 구조체의 정적 구조 시험

  • Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.129-142
    • /
    • 2005
  • A semi-monocoque truncated cone structure, which is a main structure for the payload adapter of KSLV-I, was designed. Static test was performed to confirm the reliability of the cone structure under the design loads. Strains and displacements are measured during four load cases; the compressive axial, pure bending, pure shear, and combined loading conditions. The results showed that the cone structure satisfies the design requirements. An equivalent axial load was applied to the cone structure so that the global buckling of the cone structure occurred. The measured buckling load was compared with the predicted one by finite element method. The results show a good agreement.

  • PDF

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

Biomechanical Fatigue Analysis of Cervical Plate Systems by using a Computer Simulation Based on Finite Element Method (유한요소법을 이용한 척추 삽입형 경추판 시스템에 대한 생체역학적 피로해석)

  • Kim, Sung-Min;Yang, In-Chul;Cho, Sung-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.96-103
    • /
    • 2008
  • In this study, we performed the biomechanical analysis of cervical plate systems by using a computer simulation based on finite element method to derive reliable model by analysis of design variables and fatigue behavior. To simulate the cervical spine movement in-vivo state by surgery, we modeled the cervical plate system which consisted of screws, rings, rivets, and plate and Ultra High Molecular Weight Polyethylene (UHMWPE) Block. The experiment of cervical plate system followed the ASTM F1717 standards that covered the materials and methods for the static and fatigue testing. The result of computer simulation is compared with experimented test. We expected this study is to derive reliable results by analysis of design variables and fatigue behavior for developing a new model.

A Study on Failure Mechanisms of Composite Tubes with Woven Fabric Carbon, Glass and Kevlar/epoxy Under Compressive Loadings (직조된 탄소, 유리 및 케블라 섬유 복합소재 튜브의 압축하중하에서 파손 메커니즘 분석 연구)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Lee, Ho-Sun;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.590-596
    • /
    • 2009
  • In this study, the failure modes and energy absorption characteristics of four different kinds of circular tubes made of carbon, glass, Kevlar and carbon-Kevlar hybrid fibres composites with epoxy resin have been evaluated. To achieve these goals, compressive tests were conducted for the tubes under 10mm/min loading speed. Based on the test results, the carbon/epoxy tube showed the best energy absorption capability, while carbon-Kevlar/epoxy tubes were worst. In the failure mode during crushing, both of the carbon/epoxy tubes and the glass/epoxy tubes were crushed by brittle fracturing mode. The Kevlar/epoxy tubes were collapsed by local buckling mode like steel, while the carbon-Kevlar hybrid tubes were collapsed by mixed mode of local buckling and lamina bending.

An Experimental Study on the Hybrid Composite Carbody Structure (하이브리드 복합재 철도차량 차체에 대한 시험적 연구)

  • Kim Jung-Seok;Jeong Jong-Cheol;Lee Sang-Jin
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2005
  • This paper has performed an experimental study on the hybrid composite carbody of Korean tilting railway vehicle. The hybrid composite carbody has the length of 23m and is comprised of a 40mm-thick aluminium honeycomb core and 2mm-thick woven fabric carbon/epoxy face sheet. In order to evaluate the structural behavior and safety of the hybrid composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. The test was performed under Japanese Industrial Standard (JIS) 17105 standard. from the tests, the maximum deflection was 12.3mm and the equivalent bending stiffness of the carbody was $0.81\times10^{14}\;kgf{\cdot}mm^2$. The maximum strain of the composite body was below $20\%$ of failure strain of the carbon/epoxy face sheet.