• Title/Summary/Keyword: 정적 및 동적 특성

Search Result 306, Processing Time 0.028 seconds

Evaluation of Structural Performance of Multi-tiered Roof Korean Traditional Timber Building Daeungbojeon Hall of Magoksa Temple Under Vertical Load (중층 전통 목조건축 마곡사 대웅보전의 수직하중에 대한 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper assesses the structural performance of the Daeungbojeon Hall of Magoksa in Gongju, a representative multi-tiered roof traditional timber structure from the Joseon Dynasty, under vertical loads. Employing midas Gen, a structural analysis software, we developed a three-dimensional analysis model closely resembling the actual structure. Static analysis was employed to evaluate the safety and serviceability of the main vertical and horizontal members under vertical loads. While all members met the safety and serviceability criteria, structural weaknesses were identified in the Daelyang of the lower floor, particularly as a transitional beam, necessitating improvement. For the evaluation of dynamic behavior characteristics, eigenvalue analysis was conducted, assuming a relative rotational stiffness of 5% at the main joints. The natural period was determined to be 1.105 seconds, placing it within the category of a Hanok of similar size. The first mode manifested as a translational movement in the forward and backward direction of the building.

Stability Evaluation on Particle Size Characteristics of Bed Materials at High-Velocity Flow (고유속 흐름에서 하상재료의 입도특성에 따른 안정성 평가연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.365-376
    • /
    • 2021
  • In general, domestic streams and rivers are composed of alluvial rivers consisting of sand and gravel beds. These rivers can cause erosion and riverbed changes due to sudden changes in flow rates, such as floods, torrential rains, and heavy rains. In particular, there are various types of erosion, such as contraction erosion caused by changes in river shape, or local erosion occurring around obstacles such as piers, abutments or embankments. In addition, river changes can occur in various forms, such as static or dynamic periods, due to limitations such as flow rate, velocity, and shear stress. This study focused on the erosions of embankments directly related to human casualties among various river structures, and evaluated limit velocities and critical shear stress in order to identify changes in strength of natural materials by identifying the characteristics of natural hoan materials and resistance to erosions. In particular, the limitations of materials according to the type of materials in the river, characteristics of particles, and size of particles were studied using Soil loss, which is a change in the volume of the revetment material, and it is intended to be used as basic data for river design and restoration.

Physical and Mechanical Properties of Phyllostachys pubescens Treated with Hot Water and Microwave Irradiation (열수 및 마이크로웨이브처리 맹종죽재의 물리적·기계적 특성)

  • Shin, Hoon-Jae;Ahn, Sang-Yeol;Byeon, Hee-Seop;Park, Sang-Bum;Kong, Young-To
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.40-49
    • /
    • 2004
  • Phyllostachys pubescens planted in the Nambu Forest Experiment station in Jinju city of Gyongnam province was used, to investigate the physical and mechanical property of bamboo in this study. The ages of the P. pubescens were 1, 2 and 3 years, respectively. This experiment was carried out in August and January. The P. pubescens were divided into upper, middle and lower parts according to the growing points. The physical and mechanical properties of the P. pubescens were investigated before and after treatment of hot water and microwave irradiation. 1. The upper part of the P. pubescens indicated the highest static MOE according to the growing points. The range of the static MOE was from 70,000 to 110,000kgf/cm2. 2. When P. pubescens were treated with hot water of 95℃, the ratio of softening was about 10~30%. 3. As microwave irradiation time was increased, the MOE values was decreased in both green and water-saturated bamboos. For the irradiation time of 20 and 30 seconds, the static MOE of P. pubescens was decreased up to about 50% comparing with non-treated.

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.

Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam (연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Building structures of apartment in korea conventionally adopt shear walls using coupling beams as seismic force-resisting systems. Energy dissipating devices employed the building structures are used instead of the coupling beams in order to increase the seismic performances by providing additional damping and stiffness. This study aims to introduce energy dissipating devices which are preferred in structural system and aims to investigate structural behaviors of shear wall structures employing such devices instead of coupling beams. In order for achieve research objectives, Finite Element Analysis and Nonlinear analysis was carry out. Finite Element Analysis results was correspond with experimental results and this is indicated that the device can provide sufficient additional damping and stiffness into shear wall structures. Throughout nonlinear static analyses, examples structures with the devices can enhance seismic performance of building structures due to their sufficient energy dissipating capacities. Especially, strength and ductility capacities were significantly improved when it is compared with the performance of building structures without the devices. Throughout nonlinear dynamic analyses, it was observed that structural damages can be mitigated due to reduced seismic demands for seismic force-resisting systems. It is especially noted due to the fact that story drifts, accelerations, shear demands are reduced by 15~18%, 20~28% and 15~20%, respectively.

Estimation of a 9.77 G/T Small Fishing Vessel's Operating Performance Depending on Forward Speed Based on 3-DoF Captive Model Tests (9.77톤급 소형어선의 3자유도 구속모형시험을 통한 선속 별 운항성능 추정)

  • Dong-Jin Kim;Haeseong Ahn;Kyunghee Cho;Dong Jin Yeo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.305-314
    • /
    • 2023
  • In this study, a mathematical model of a 9.77 G/T small fishing vessel was established based on captive model tests. The powering and manoeuvring performances of the vessel in the harbor and coastal sea were focused on, so captive model tests were conducted up to the full-scale speed of 8 knots. Propeller open water, resistance, and self-propulsion tests of a 1/3.5-scaled model ship were performed in a towing tank, and the full-scale powering performance was predicted. Hydrodynamic coefficients in the mathematical model were obtained by rudder open water, horizontal planar motion mechanism tests of the same model ship. In particular, in static drift and pure yaw tests which were conducted at a speed of 2 to 8 knots, the linear hydrodynamic coefficients varied with the ship speed. The effect of the ship speed on the linear coefficients was considered in the mathematical model, and manoeuvring motions, such as turning circles and zig-zags, were simulated with various approach speeds and analyzed.

Nocturnal Surface Cooling and Cold Air Transport Analysis Based on High Density Observation - A Case Study of Eunpyeong New Town in Seoul (고밀도 관측자료를 이용한 야간 지면냉각과 찬공기 이동 분석 - 서울 은평구 뉴타운 사례)

  • Yi, Chae-Yeon;Kim, Kyu-Rang;Choi, Young-Jean;Won, Hye-Young;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.124-137
    • /
    • 2012
  • Climate analysis is important in urban planning for human comfort. Synoptic weather conditions can only resolve the 30% of local variance of wind conditions whereas 70% of the variance arise from local terrain, buildings, and other small scale thermal conditions. Climate Analysis Seoul (CAS) was developed to resolve such micro-scale climate. The Local-scale air temperature Deviation (LD) analysis map from CAS showed the co-existence of built-up and suburban areas in the study region (CR, Cold-air analysis Region) despite its small extent. Temperature, humidity, wind speed, and wind direction were monitored in CR. Hourly observed cooling rate agreed well with LD. Cold air production, transportation, and stagnation was visualized by the observed Vertical Temperature Gradient (VTG) along the small stream in CR. VTG observed at the upper-most stream can be divided into two components: radiative cooling and cold air inflow from outside. Radiative cooling exists regardless of the wind speed whereas cold air inflow occurs only with calm wind. From the regression analyses based on the wind speed, the inflow portion was determined as 84% of radiative cooling. Climate analysis in the future will be able to characterize the changes in cold air by urban development plan to support the human comfort.

Analysis of Scientific Models in Science Textbooks for the 7th Grade (중학교 과학 교과서 물질 영역의 과학적 모형 유형 분석)

  • Kim, Ae-Jung;Park, Hyun-Ju;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, June-Hee;Choe, Seung-Urn
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.363-370
    • /
    • 2012
  • The purpose of the study was to classify scientific models in the seventh grade science textbooks of the 2007 revised science curriculum. The three chapters of 'three states of material', 'motion of molecule', and 'change of state and energy' were investigated. There were two types of the scientific model as 'mode of representation' and 'attribute of representation'. The mode of representation was composed of 'action model', 'analogical model', 'symbolic model', and 'theoretical model' and the attribute of representation was composed of 'static model' and 'dynamic model'. The results showed that the action model and the analogical model were used primarily in mode of representation. The dynamic model were widely used in attribute of representation. Area of matters dealt with conception of molecules and aimed for students to understand the arrangement and movement of molecule microscopically about macroscopic state in a daily life. Tis study could help to recognize the limitations of scientific models on current textbooks and offer more useful information in planning lessons and organizing textbooks for the future.

A Study on the Relationship between Body Function and Prelusive Movement to Falls to Promote Wellness in Chronic Stroke Patients (만성뇌졸중 환자의 웰니스 증진을 위한 신체기능과 낙성전조동작의 관련성 연구)

  • Park, Chang-Sik;Kim, Jin-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.181-192
    • /
    • 2021
  • This study was conducted to investigate the effects of a participatory rehabilitation program on sit-rise and rise-to-walk test performances, and perception and motor skills in adults with medically vulnerable individuals and, adults with developmental disabilities in particular. Seventeen adults with developmental disabilities participated in a participatory rehabilitation program using resistance bands and exercise balls, for 60 minutes once weekly over 13 weeks. Their performances were measured before and immediately after the intervention, and 12 weeks after. The findings were as follows. In the sit-rise test, the number of times rising from sitting posture increased after the intervention versus before, but the difference was not statistically significant. In the rise-to-walk test, the performance showed statistically significant difference over time, and the post-hoc test showed a significant effect after the intervention versus before. There was no significant difference in perception and motor skills. In sum, the participatory rehabilitation program positively influenced dynamic balancing related to functional activities but had no significant effect on perception and motor skills, which is related to motor control and motor learning. It is suggested that to increase the participation in community activities, reduce fall risk, and improve dynamic balancing abilities in adults with developmental disabilities, participatory rehabilitation programs should be utilized to promote the physical wellbeing.

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.