• Title/Summary/Keyword: 정적재하시험

Search Result 92, Processing Time 0.033 seconds

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

Analytical Study on the Pullout Resistance Characteristics of Bored Pile (매입말뚝의 인발저항특성에 관한 연구)

  • Park, Jong-Bae;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Structural experiment result showed that PHC(d=600mm) Pile used as a common compression member could resist 83.6 ~ 91.6 tonf of ultimate tension force, if the adhesion of P.C. bar of PHC pile to the concrete foundation is strengthened. Considering a proper safety factor to ultimate tension strength, PHC pile can substitute the anti-floating anchor, or reduce the number of anchors. For this purpose, pullout resistance behavior of a Bored pile embedded in real ground as well as structural tension strength of PHC pile must be evaluated. This study performed the static pullout tests to evaluate the pullout behavior of bored pile, and compared the test results with design value of side resistance. To evaluate the pullout resistance easily, static pullout test results were compared with dynamic loading test results using PDA. As a result, cement paste of the bored pile was hardened which is after 15 days, LH side resistance design value corresponded well to the Static pullout test results, also to the side resistance evaluated by dynamic loading test.

Experimental study on Static Behavior of H-beam prestressed with Multi-Stepwise TPSM (다단계 온도프리스트레싱 도입 강재보의 정적거동평가를 위한 실험적 연구)

  • An, Jin Hee;Jung, Chi Young;Kim, Jun Hwan;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.247-258
    • /
    • 2008
  • In this study, static loading tests were performed on H-beam specimens to assess the static behavior of H-beam prestressed with multi-stepwise thermal prestressing method (TPSM). The amount of induced thermal prestress and connection type were differentiated among the 400-mm-high and 6,000-mm-long H-beam specimens to evaluate their effect on the behavior of the beams. From the experimental results, it between the H-beam and the cover-plate increased in yielding load by 13~18%, whereas stiffness increased by 27~34%. In case of specimens with both bolting and welding connection, yie lding load increased by 18~29% and stiffness increased by 43~51%. Multi-stepwise initial stress distribution was also observed from the prestressed specimens, verifying the effectiveness of the multi-stepwise TPSM. By application of the multi-stepwise TPSM, a significant increase in yielding load and stiffness can be achieved, hence increasing sectional and prestressing efficiencies.

Response Analysis of PSC-I Girder Bridges for Vehicle's Velocity (재하차량 속도에 따른 PSC-I 거더 교량의 거동분석)

  • Park, Moon-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • The response of a bridge can be influenced by span length, bridge's surface condition, vehicle's weight, and vehicle's velocity. It is difficult to predict accurate behavior of a bridge. In the current standard of specifications, such dynamic effect is defined by impact factor and prescribed to consider live load as to increase design load by means of multiplying this value by live load. However, it is not well understood because the Impact factor method differs from every country. Dynamic, static and pseudo-staitic field loading tests on PSC-I girder bridges were carried out to find out the dynamic property of the bridge. This paper is aimed to figure out actual dynamic property of the bridge by using field loading test. An empirical method based on impact factor is widely used and also argued. Displacement and strain response measured from the tests was compared with one from the empirical method. The former seems to be reasonable since it can consider actual response of a bridge through field tests.

Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes (신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험)

  • 최동욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.137-147
    • /
    • 1997
  • Interface shear strength of' concrete under static loading and deterioratiion of interface strength by fatigue loading in shear were experimentally investigated using composite beam test specimens. Thirteen beams were constructed. Five composite beams were tested statically until interface delaminations were observed in the static tests. Seven composite beam and one monolithically cast beam were subjected to two to three million cycles of fatigue load. Test variables were interface roughness, interface shear reinforcement, and presence of interface bond. The average interface shear strength of the composite beams with bonded-rough interface was 6, 060 kPa. No interface delamination was observed after cycling for the composite beams with bonded - rough interface and interface bond was not influenced by repeated application of the shear stress of 2.000 kPa(about 1/3 of the static interface shear strength). Smooth interface and unbonded-rough interface with shear reinforcement deteriorated under repeated shear loading.

Effects of Semi-Rigid Connection and Foundation Type on Static Behavior of Plastic Greenhouse (부재 교차부와 기초 조건이 비닐하우스의 정적거동에 미치는 영향)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Lee, Eung-Ho;Woo, Jong-Gyu;Lee, Jae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.61-62
    • /
    • 2011
  • 비닐하우스는 매우 세장한 강관부재들을 교차 결합하여 조립한 철골 구조물의 한 종류이다. 현행 설계기준으로 단동 비닐하우스의 최대 구조성능은 풍하중 40m/s, 설하중 50cm에 달한다. 그러나 설계 단계에서는 부재들의 교차결합 특성 및 부재가 직접 지반에 삽입되는 기초의 특성이 적합하게 반영되지 않는 문제점이 있다. 따라서 가력시험을 통하여 반강접 특성을 갖는 부재 교차부 및 지반삽입기초 조건이 구조물의 거동에 미치는 영향을 분석하였다. 부재 교차부가 강접 조건일 경우와 비교하여 교차부가 반강접일 경우에는 재하지점의 수평강성이 최대 54% 작게 나타났으나 주변 교차절점들에서의 에너지 흡수로 인하여 재하지점과 수평으로 3m 떨어진 지점에서는 반대로 최대 39% 큰 값을 보였다. 지반삽입기초의 경우에는 고정조건과 비교하여 재하지점의 수평강성이 최대 32% 작게 나타났으며, 지점부에서는 기초 조건의 영향으로 최대 26%의 휨강성 증가 효과를 보였다. 부재 교차부와 기초 조건이 구조물의 정적거동에 미치는 영향을 확인하였으나 최대내력과 강성 산정을 통한 구조성능 평가 방법의 개발이 필요할 것으로 판단된다.

  • PDF

A Comparison of Static and Dynamic Deformation Modulus by Dynamic Plate Test (동평판 재하시험을 이용한 정적 및 동적 변형계수 비교)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.335-342
    • /
    • 2003
  • The method of measuring ground deformation modulus, in situ-testing has the disadvantage where the exam number is limited because it needs counter weight and a lot of measurement times. Recently, it has supplemented this problem and the equipments by which measurement can be made quickly are developed and applied in field., That is Falling Weight Deflectometer(FWD), Light Drop Weight Tester(LDWT), Geogauge. Light Drop Weight Teste.(LDWT) is introduced firstly in the name of ‘a lightweight fall circuit tester for a railroad public corporation’ by KTX. Since KTX introduced LDWT, a number of research organizations have used LDWT to find out domestic standard for quality management of base ground. In this study we used ZFG 02 which was manufactured by Stendal in Germany and measured the dynamic deformation modulus in soil box and in-situ. And we analyzed the correlation of the dynamic deformation modulus with static deformation modulus based on plate test in the same ground.

Reinforcement Effect of Cracked Concrete Tubes and Box Culverts by Installing Profile with Steel Stiffener and High Strength Mortar (스틸보강재가 부착된 프로파일 및 고강도 모르타르를 이용한 균열손상 콘크리트관의 보강효과)

  • Yeo, Sang Rok;Cho, Eun Sang;Hwang, Won Sup;Jeong, Jae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.69-78
    • /
    • 2008
  • In this study, in order to verify the reinforcement effects of the cracked concrete tubes and culverts, static load test was conducted. After the load carrying capacity of the original concrete tubes (nominal diameter 0.8 m, 1.0 m, 1.5 m) and box culverts (inner width 2.0 m. 2.5 m) was reduced by the cracking test, the cracked concrete specimens were strengthened by installing profile with steel stiffener and high strength mortar. And then, the maximum load tests were conducted the renewal concrete tubes and box culverts. According to the method application, the load carrying capacity increased 1.66~3.50 times than it of the original tubes before applying the method. In case of the original box culverts, the load carrying capacity increased 1.66~3.10 times than the case before installing profile and high strength mortar. Also non-linear analysis was carried out by using the commercial FEM program of ABAQUS 6.6. Solid (C3D8R) elements and concrete damage plasticity option was applied to the analysis. For reflecting confined reinforcing bars in the analysis, the composite material properties were used.

The Static Behavior of Bridge Expansion Joints Due to the Wheel Load (윤하중 재하에 의한 교량 신축이음의 정적거동)

  • Kim, Youngjin;Kwak, Imjong;Cho, Changbaek;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.357-366
    • /
    • 2008
  • This study addresses the analysis of the behavioral characteristics of bridge expansion joints under wheel loading through wheel load test and the proposal of relevant wheel load specifications for expansion joints. To that goal, specimens of rail and finger expansion joints that are widely used in Korea were fabricated and subjected to static wheel load test using a real tire wheel. The wheel load distribution factor in the rail and finger expansion joints in contact with the wheel load was evaluated. The evaluation revealed that the portion of load sustained by the central rail of rail expansion joint was decreasing with larger wheel load, and that the portion of load sustained by the finger expansion joint was practically insensitive to the increase of the contact area and remained nearly constant. Since the wheel load characteristics showed large difference compared to former design specifications, it appears necessary to prepare rational specifications relative to the distribution of the wheel load contact pressure for the design of expansion joints.

Evaluation of the Load Carrying Capacity on a Rahmen Bridge with Ultra-high Strength Centrifugally Formed Square Beams as the Superstructure (초고강도 원심성형 각형보를 상부구조로 하는 라멘교의 내하성능 평가 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the water-tightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures. The centrifugal prismatic PSC beam developed as the superstructure of the avalanche tunnel was constructed on a rahmen bridge in a small local river. In this study, the centrifugal prismatic beam was compared and analyzed based on the results of measurements made through static load tests and the results of numerical analysis of the target structure. The common load-carrying capacity and safety of the rahmen bridge were evaluated. The static·dynamic load tests and finite element analysis results of this bridge were similar, and it was confirmed that the behavior of the centrifugal prismatic beam was well simulated. All centrifugally formed square beams that make up the composite rahmen bridge were evaluated to secure sufficient load carrying capacity under the design live load, and structural reliability was proven by ensuring safety.