• Title/Summary/Keyword: 정유향기

Search Result 79, Processing Time 0.022 seconds

Influence of Isolation Method on the Composition of Apricot (Prunus armeniaca var. ansu Max.) Flavor (살구의 휘발성 성분 조성에 대한 분리방법의 영향)

  • Kim, Young-Hoi;Kwag, Jai-Jin;Kwon, Young-Ju;Yang, Kwang-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.543-548
    • /
    • 1990
  • Volatile components of fresh apricot (Prunus armeniaca var. ansu Max.) were isolated by simultaneous distillation-extraction at two different pH values of 3.1 and 7.0 and by headspace trapping method. The volatiles were analyzed by GC and GC-MS. A total of 80 components were identified in the three aroma concentrates, including 9 naphthalene derivatives that were not previously reported in apricot. Of components identified in native pH (3.1) sample, the major components were aliphatic $C_6$ aldehydes and alcohols, monoterpene alcohols, benzyl alcohol, ${\beta}-phenylethyl$ alcohol and naphthalene derivatives, while those in neutral pH(7.0) sample and headspace volatiles were aliphatic $C_6$ aldehydes and alcohols. Simultaneous distillation-extraction at pH 3.1 was significantly increased the concentration of n-hexanal, trans-2-hexenal, cis-3-hexen-1-ol, linalool oxide, linalool, ${\alpha}-terpineol$, nerol, geraniol, benzyl alcohol, ${\beta}-phenylethyl$ alcohol and naphthalene derivatives. These results demonstrate that above the components are present in glycosidically bound forms in apricot.

  • PDF

Analysis of Volatile Flavor Compounds from the Leaves of Eucommia ulmoides (두충잎의 휘발성 향기성분 분석)

  • 이미순;정미숙
    • Korean journal of food and cookery science
    • /
    • v.17 no.4
    • /
    • pp.359-366
    • /
    • 2001
  • This study was performed to analyze the volatile flavor compounds of Eucommia ulmoides leaves as influenced by harvesting time and drying method. Essential oils of fresh, air-dried and freeze-dried leaves of Eucommia ulmoides were extracted by SDE(simultaneous steam distillation and extraction) method using pentane and diethyl ether(1:1), and their volatile flavor compounds were analyzed by GC and GC-MS. Total 51 components, including 10 hydrocarbons, 15 alcohols, 12 aldehydes, 4 ketones, 4 esters and 6 acids were identified in fresh Eucommia ulmoides harvested in July. In fresh samples harvested in September, 15 hydrocarbons, 10 alcohols, 5 aldehydes, 4 ketones, 4 esters and 3 acids were identified. In fresh Eucommia ulmoides, aldehydes(8.25ppm) were the most abundant compounds in July samples and alcohols(18.87ppm) in September ones. Seventy one components, including 21 hydrocarbons, 12 alcohols, 12 aldehydes, 9 ketones, 5 esters, 8 acids and 4 miscellaneous ones were identified in air-dried samples harvested in July. In air-dried samples harvested in September, 10 hydrocarbons, 9 alcohols, 3 aldehydes, 3 ketones, 4 esters, 4 acids and 1 miscellaneous one were identified, and the most abundant compounds in July and September samples were hydrocarbons at 5.06ppm and 15.11ppm, respectively. A total of 41 components, including 13 hydrocarbons, 9 alcohols, 5 aldehydes, 3 ketones, 6 esters and 5 acids were identified in freeze-dried samples harvested in July. Freeze-dried samples harvested in August also contained 41 components but with different types, and the ones of September 26 compounds. In freeze-dried ones, hydrocarbons were the most abundant compounds in July sample and esters in August and September samples.

  • PDF

Changes in the Volatile Compounds of Artemisia capillaris Essential Oil during Storage (사철쑥 정유의 저장 중 향기성분 변화)

  • Chung, Mi-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.4 s.100
    • /
    • pp.413-422
    • /
    • 2007
  • In this study, changes in the volatile compounds of Artemisia capillaris essential oil were investigated under six different storage conditions for 6 months. The essential oil was collected by steam distillation and analyzed by a gas chromatography-mass selective detector (GC-MSD). Seventy-five volatile compounds were identified from the fresh essential oil of Artemisia capillaris. During storage, the total levels of aldehydes, alcohols, and ketones slightly decreased and the level of hydrocarbons greatly decreased; the total level of esters also decreased in the essential oil. Notably, the levels of carvacrol, eugenol, myrcene, 1,8-cineole, caryophyllene, coumarin, ${\alpha}-thujone$, ${\beta}-thujone$, borneol, and ${\gamma}-terpinene$, known as antioxidants and antimicrobial agents, decreased during storage. Finally, aerobic storage conditions caused greater reductions in some compounds even at low temperatures.

Essential Oil Conten and Composition of Aromatic Constituents in Some Medicinal Plant (몇가지 약용식물의 향기성분 조성 및 식물정유 함량)

  • 김상국
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.279-282
    • /
    • 1998
  • This expriment was carried out to get basic information on composition and yield of aromatic constituents in leaves of four medicinal plants, Angelica tenuissima, Chrysanthemum zawadskii. ssp. latilobum, Artemisia iwayomogi and Artemisia capillaris. Volatile aromatic constituents, 28 compounds in Angelica tenuissima were identified and 19 compounds were indentified in Chrysanthemum zawadskii ssp. latilobum. Volatile aromatic constituents, 23 compounds in Artemisia iwayomogi and Artemisia capillaris were identified. Major volatile aromatic consitiuents analyzed by GC/MS in four plants were $\alpha$-pinene, camphene, sabinene, cis-2-hexanol, and camphor etc. Content of essential oils in Angelica tenuissima, Chrysanthemum zawadskii ssp. latilobum, Artemisia iwayomogi and Artemisia capillaris were 0.014, 0.275, 0.785, and 0.452%, respectively. As a result, it was suggested that a medicinal plant, Artemisia iwayomogi, was worthy of using as a useful material of perfume.

  • PDF

Compositional Changes in Essential Oil of Zanthoxylum piperitum A.P. DC. During Storage (초피 정유의 저장 중 향기성분 변화)

  • Chung, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.4
    • /
    • pp.433-438
    • /
    • 2006
  • Compositional changes In essential oil of Zanthoxylum piperitum A.P. DC. were investigated under six different storage conditions for 3 months. Essential oil from Zanthoxylum piperitum was collected by steam distillation method and analyzed by gas chromatography-mass selective detector (GC-MSD). Forty-one volatile compounds, consisting of 12 hydrocarbons, 11 alcohols, 8 aldehydes, 3 oxides, 3 esters, 3 ketones and 1 acid were identified from the fresh essential oil of Zanthoxylum piperitum. In essential oils, compositional changes occurred in particularly monoterpene hydrocarbons. Total levels of ketones, esters, oxides and alcohols increased during storage. Moreover, aerobic condition caused decrease in a few constituents duringstorage even at low temperature.

Agronomic Characteristics and Aromatic Compositions of Korean Wild Codonopsis lanceolata Collections Cultivated in Field (한국 야생더덕 수집종의 노지 재배시 생육 특성과 향기성분 조성)

  • 이승필;김상국;민기군;조지형;최부술;이상철;김길웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.188-199
    • /
    • 1996
  • The native ecological environment and aromatic constituents of Korean wild Codonopsis lanceolata and one Japanese strain were investigated to find Codonopsis lanceolata strains showing high aromatics, and to know regional differences among these strains. The results were as follows : There were no remarkable differences among the Korean wild C. lanceolata strains in ecological environments. Recovery yield of essential oils was highest in Togyusan strain with 0.009%. Difference in protein band patterns among these strains was not recognized, and peroxidase and esterase pattern changes were appeared in different collected regions at the leaf and root tissues. Major aromatic constituents were 11 kinds of aliphatic alcohols such as trans-2-hexenal, 1-hexanol, cis-3-hexanol, and trans-2-hexanol. And Togyusan strain, Sobaeksan strain, and Kayasan strain have the highest aliphatic alcohols of plant essential oils. In particular, BHT(butylated hydroxytoluene), one of the antioxidants, was detected in Chirisan strains.

  • PDF

Studies on Flavor Components and Organoleptic Properties in Roasted Red Ginseng Marc (볶음처리한 홍삼박의 향기성분과 관능적 특성)

  • Park Myung-Han;Sohn Hyun-Joo;Jeon Byeong-Seon;Kim Na-Mi;Park Chae-Kyu;Kim An-Kyun;Kim Kyo-Chang
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.211-216
    • /
    • 1999
  • The red ginseng marc was roasted at various conditions and its organo-leptic properties and flavor components were investigated. Scorched-rice odor and roasted odor and the roasted red ginseng marc powder were much stronger than those from the unroasted red ginseng marc powder while earth odor, old-rice odor, metalic off-odor and woody odor were much weaker than those from the unroasted red ginseng marc. Savory odor and scorched-rice odor as well as savory taste and astringent taste from the water-extract of red ginseng marc roasted at $200^{\circ}C$ were stronger, but smoky odor, woody odor, biner taste and rough taste were weaker than those roasted at $230^{\circ}C$. Seven kinds of pyrazines, two kinds of carbonyl compounds, seven kinds of acids, two kinds of esters, five kinds of phenolic compowlds, maltol and six other compounds were identified as flavor components in distillate from red ginseng marc roasted at $200^{\circ}C$ for twenty minuties. Of them pyrazines and maltol are thought to be compounds which have characteristic odor such as roasted odor and/or scorchedrice odor in the roasted red ginseng marc.

  • PDF

Effect of Gamma-Irradiation on the Volatile Flavor Compounds from Dried Ginger (Zingiber officinale Roscoe) (건조생강의 감마선 조사에 의한 휘발성 향기성분 변화)

  • No, Ki-Mi;Seo, Hye-Young;Gyawali Rajendra;Shim, Seong-Lye;Yang, Su-Hyeong;Lee, Sung-Jin;Kim, Kyong-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.892-898
    • /
    • 2005
  • The effect of gamma irradiation on volatile components of Korean dried ginger (Zingiber officinale Roscoe) was studied and compared with non-irradiated sample. Volatile compounds from non- and irradiated samples were extracted using simultaneous distillation-extraction (SDE) apparatus and analyzed by gas chromatography-mass spectrometer (GC/MS). A total of 83 and 71 compounds were identified and quantified from non-and irradiated dried ginger at dose of 10 kGy. Identified components were hydrocarbons, alcohols, aldehydes, esters, ketones and miscellaneous compounds. The terpenoid compounds in volatile flavor compounds identified from non and irradiatied dried ginger were $98.27\%\;and\;98.12\%$, respectively. $\alpha$ -zingiberene,$\beta$-sesquiphelland reno, geranial, (Z,E) $\alpha$ -farnesene, $\beta$ -phellandene were detected as major volatile compounds of two experimental sample. The amount of volatile components in the samples was changed by irradiation but the profile of volatiles in non- and irradiated dried ginger were the same.

Comparison of Fragrance and Chemical Composition of Essential Oils in Gom-chewi (Ligularia fischeri) and Handaeri Gom-chewi (Ligularia fischeri var. spicifoprmis) (곰취(Ligularia fischeri)와 한대리곰취(Ligularia fischeri var. spicifoprmis) 정유의 향취 및 향기성분 비교)

  • Yeon, Bo-Ram;Cho, Hae Me;Yun, Mi Sun;Jhoo, Jin-Woo;Jung, Ji Wook;Park, Yu Hwa;Kim, Songmun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1758-1763
    • /
    • 2012
  • This study was conducted to compare fragrance and volatile chemicals of essential oils in Gom-chewi (Ligularia fischeri) and Handaeri Gom-chewi (Ligularia fischeri var. spicifoprmis). Essential oils were extracted by steam distillation of leaves of Gom-chewi (GC) and Handaeri Gom-chewi (HGC), after which samples were collected by solid-phase micro extraction and the compositions of the essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS). The yields of the essential oils in GC and HGC were 0.12% and 0.04%, respectively, and the threshold levels of the essential oils in GC and HGC were 0.01% and 0.1%, respectively. There were 19 constituents of the essential oil of Gom-chewi: 14 carbohydrates, 4 alcohols, and 1 acetate, and the major constituents were L-${\beta}$-pinene (36.02%), D-limonene (25.64%), ${\alpha}$-pinene (24.85%) and ${\beta}$-phellandrene (5.39%). In the essential oil of HGC, 25 constituents were identified: 17 carbohydrates, 4 alcohols, 3 acetates, and 1 N-containing compound, and the major constituents of HGC were D-limonene (39.74%), L-${\beta}$-pinene (35.43%) and ${\alpha}$-pinene (11.94%). The minor constituents of HGC were ${\rho}$-cymene, ${\gamma}$-muurolene, ${\gamma}$-cadinene, germacrene D, ingol 12-acetate and butyl 9,12,15-octadecatriene and nimorazole were not identified in the GC essential oil. Overall, the results showed that the fragrance and chemical compositions of essential oils in GC and HGC differed, suggesting that both essential oils could be used for the development of perfumery products.

Comparison of volatile flavor compounds of yuzu, kumquat, lemon and lime (유자, 금귤, 레몬 및 라임의 휘발성 향기성분의 비교)

  • Hong, Young Shin;Lee, Ym Shik;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.394-405
    • /
    • 2017
  • This study was conducted to confirm the usefulness of essential oil components in yuzu and kumquat cultivated in Korea for comparison with those in lemon and lime. The volatile flavor compounds in citrus fruits (yuzu, kumquat, lemon and lime) were extracted for 3 h with 100 mL redistilled n-pentane/diethylether (1:1, v/v) mixture, using a simultaneous steam distillation and extraction apparatus (SDE). The volatile flavor compositions of the samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The aroma compounds analyzed were 104 (3,713.02 mg/kg) in yuzu, 87 (621.71 mg/kg) in kumquat 103 (3,024.69 mg/kg) in lemon and 106 (2,209.16 mg/kg) in lime. Limonene was a major volatile flavor compound in four citrus fruits. The peak area of limonene was 35.03% in yuzu, 63.82% in kumquat, 40.35% in lemon, and 25.06% in lime. In addition to limonene, the major volatile flavor compounds were ${\gamma}$-terpinene, linalool, ${\beta}$-myrcene, (E)-${\beta}$-farnesene, ${\alpha}$-pinene and ${\beta}$-pinene in yuzu, and ${\beta}$-myrcene, ${\alpha}$-pinene, (Z)-limonene oxide, (E)-limonene oxide, geranyl acetate and limonen-10-yl acetate in kumquat. Furthermore, ${\gamma}$-terpinene, ${\beta}$-pinene, ${\beta}$-myrcene, geranyl acetate, neryl acetate and (Z)-${\beta}$-bisabolene in lemon and ${\gamma}$-terpinene, ${\beta}$-pinene, (Z)-${\beta}$-bisabolene, neral, geranial and neryl acetate in lime were also detected. As a result, it was confirmed that the composition of volatile flavor compounds in four citrus fruits was different. Also, yuzu and kumquat are judged to be worthy of use alternatives for lemon and lime widely used in the fragrance industry.