• Title/Summary/Keyword: 정위 체부 고정틀

Search Result 2, Processing Time 0.014 seconds

Preliminary Results of Stereotactic Radiosurgery Using Stereotactic Body Frame (정위 체부 고정틀을 이용한 체부 방사선수술의 예비적 결과)

  • Ahn Seung Do;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoo;Nho Young Ju;Shin Kyung Hwan;Kim Kyoung Ju;Chung Won Kyun;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.251-256
    • /
    • 2000
  • Purpose : To evaluate efficacy and complication of stereotactic radiosurgery using stereotactic body frame. Methods and Materials :From December 1997 to June 1999, 11 patients with primary and metastatic tumors were treated with stereotactic radiosurgery using stereotactic body frame(Precision TherapyTu). Three patients were treated with primary hepatoma and seven with metastatic tumor from liver, lung, breast, trachea and one with arteriovenous malformation on neck. We used vacuum pillow for immobilization and made skin marker on sternum and tibia area with chest marker and leg marker. Diaphragm control was used for reducing movement by respiration. CT-simulation and treatment planning were peformed. Set-up error was checked by CT-Simulator before each treatment. Dose were calculated on the 80$\~$90$\%$ isodose of isocenter dose and given consecutive 3 fractions for total dose of 30 Gy (10 Gy/fraction). Results :Median follow-up was 12 months. One patient (9$\%$) showed complete response and four Patients (36$\%$) showed partial response and others showed stable disease. Planning target volumes (PTV) ranged from 3 to 111 cc (mean 18.4 n). Set-up error was within 5 mm in all directions (X, Y, Z axis). There was no complication in all patients. Conclusion :In Primary and metastatic tumors, stereotactic body frame is very safe, accurate and effective treatment modality.

  • PDF

Impact of the Planning CT Scan Time on the Reflection of the Lung Tumor Motion (전산화단층촬영 주사시간(Scan Time)이 폐종양운동의 재현성에 미치는 영향 분석)

  • Kim Su Ssan;Ha Sung Whan;Choi Eun Kyung;Yi Byong Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Purpose : To evaluate the reflection of tumor motion according to the planning CT scan time. Material and Methods : A model of N-shape, which moved aiong the longitudinal axis during the ventilation caused by a mechanical ventilator, was produced. The model was scanned by planning CT, while setting the relative CT scan time (T: CT scan time/ventilatory period) to 0.33, 0.50, 0.67, 0.75, 1.00, 1.337, and 1.537. In addition, three patients with non-small cell lung cancer who received stereotactic radiosurgery In the Department of Radiation Oncology, Asan Medical Center from 03/19/2002 to 05/21/2002 were scanned. Slow (10 Premier, Picker, scan time 2.0 seconds per slice) and fast CT scans (Lightspeed, GE Medical Systems, with a scan time of 0.8 second per slice) were peformed for each patient. The magnitude of reflected movement of the N-shaped model was evaluated by measuring the transverse length, which reflected the movement of the declined bar of the model at each slice. For patients' scans, all CT data sets were registered using a stereotactic body frame scale with the gross tumor volumes delineated in one CT image set. The volume and three-dimensional diameter of the gross tumor volume were measured and analyzed between the slow and fast CT scans. Results : The reflection degree of longitudinal movement of the model increased in proportion to the relative CT scan times below 1.00 7, but remained constant above 1.00 T Assuming the mean value of scanned transverse lengths with CT scan time 1.00 T to be $100\%$, CT scans with scan times of 0.33, 0.50, 0.57, and 0.75 T missed the tumor motion by 30, 27, 20, and $7.0\%$ respectively, Slow (scan time 2.0 sec) and Fast (scan time 0.8 sec) CT scans of three patients with longitudinal movement of 3, 5, and 10 mm measured by fluoroscopy revealed the increases in the diameter along the longitudinal axis Increased by 6.3, 17, and $23\%$ in the slow CT scans. Conculsion : As the relative CT scan time increased, the reflection of the respiratory tumor movement on planning CT also Increased, but remained constant with relative CT scan times above 1.00 T When setting the planning CT scan time above one respiration period (>1.00 T), only the set-up margin is needed to delineate the planning target volume. Therefore, therapeutic ratio can be increased by reducing the radiation dose delivered to normal lung tissue.