• Title/Summary/Keyword: 정위 방사선 치료

Search Result 179, Processing Time 0.033 seconds

Clinical Experience of LINAC-based Stereotactic Radiosurgery for Angiographically Occult Vascular Malformations (혈관조영상 잠재혈관기형에 대한 선형가속기형 정위방사선수술의 임상경험)

  • Kim Dae Yong;Ahn Yong Chan;Lee Jung Il;Nam Do-Hyun;Lim Do Hoon;Lee Jeong Eun;Yeo Inhwan;Huh Seung Jae;Noh Young Joo;Shin Seong Soo;Hong Seung-Chyul;Kim Jong Hyun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Purpose : To establish the role of stereotactic radiosurgery (SRS) for the treatment of patients with angiographically occult vascular malformation (AOVM). Materials and Methods : Eleven patients (12 lesions) with AOVM were treated with linear accelerator-based SRS between February 1995 and December 1999. A magnetic resonance imaging of each patients showed well-circumscribed vascular lesion with reticulated core of heterogeneous signal intensity and peripheral rim of low signal intensity. SRS were peformed with the median peripheral dose of 16 Gy (range 13~25). A single isocenter was used with median collimator size of 14 mm (range 8~20) diameter. Results : With a median follow-up period of 42 months (range 12~56), rebleeding occurred in 3 AOVMS at 5, 6 and 12 months after SRS but no further bleeding did. Two patients experienced radiation-induced necrosis associated with permanent neurologic deficit and one patient showed transient edema of increased 72 signal intensity. Conclusion : SRS may be effective for the prevention of rebleeding in AOVM located in surgically inaccessible region of the brain. Careful consideration should be needed in the decision of case selection and dose prescription because the incidence of radiation-induced complications is too high to be accepted.

  • PDF

Preliminary Results of Stereotactic Radiosurgery Using Stereotactic Body Frame (정위 체부 고정틀을 이용한 체부 방사선수술의 예비적 결과)

  • Ahn Seung Do;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoo;Nho Young Ju;Shin Kyung Hwan;Kim Kyoung Ju;Chung Won Kyun;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.251-256
    • /
    • 2000
  • Purpose : To evaluate efficacy and complication of stereotactic radiosurgery using stereotactic body frame. Methods and Materials :From December 1997 to June 1999, 11 patients with primary and metastatic tumors were treated with stereotactic radiosurgery using stereotactic body frame(Precision TherapyTu). Three patients were treated with primary hepatoma and seven with metastatic tumor from liver, lung, breast, trachea and one with arteriovenous malformation on neck. We used vacuum pillow for immobilization and made skin marker on sternum and tibia area with chest marker and leg marker. Diaphragm control was used for reducing movement by respiration. CT-simulation and treatment planning were peformed. Set-up error was checked by CT-Simulator before each treatment. Dose were calculated on the 80$\~$90$\%$ isodose of isocenter dose and given consecutive 3 fractions for total dose of 30 Gy (10 Gy/fraction). Results :Median follow-up was 12 months. One patient (9$\%$) showed complete response and four Patients (36$\%$) showed partial response and others showed stable disease. Planning target volumes (PTV) ranged from 3 to 111 cc (mean 18.4 n). Set-up error was within 5 mm in all directions (X, Y, Z axis). There was no complication in all patients. Conclusion :In Primary and metastatic tumors, stereotactic body frame is very safe, accurate and effective treatment modality.

  • PDF

Locally Advanced, Unresectable Pancreatic Cancer Treated by Stereotactic Radiation Therapy (국소적으로 진행된, 절제 불가능한 췌장암에서 정위 방사선 치료)

  • Choi Chul-Won;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Yoo Hyung-Jun;Lee Dong-Han;Ji Young-Hoon;Han Chul-Ju;Kim Jin;Kim Young-Han
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • Puroose: In order to find out whether stereotactic radiation therapy (RT) using CyberKnife (CK) could improve survival rate and lower acute toxicity compared to conventional RT. Materials and Methods: From April 2003 through April 2004, 19 patients with Eastern Cooperative Oncology Group (ECOG) performance status ${\leq}3$ and locally advanced pancreas cancer without distant metastasis, evaluated by CT or PET/CT, were included. We administered stereotactic RT consisting of either 33 Gy, 36 Gy or 39 Gy in 3 fractions to 6, 4 and 9 patients, respectively, in an effort to increase the radiation dose step by step, and analyzed the survival rate and gastrointestinal toxicities by the acute radiation morbidity criteria of Radiation Therapeutic Oncology Group (RTOG). Prognostic factors of age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9, planning target volume (PTV), and adjacent organ and vessel invasion on CT scan were evaluated by Log Rank test. Results: The median survival time was 11 months with 1-year survival rate of 36.8%. During follow-up period (range $3{\sim}20$ months, median 10 months), no significant gastrointestinal acute toxicity (RTOG grade 3) was observed. In univariate analysis, age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9 level, and adjacent organ and vessel invasion did not show any significant changes of survival rate, however, patients with PTV (80 cc showed more favorable survival rate than those with PTV>80 cc (p-value<0.05). In multivariate analysis, age younger than 65 years and PTV>80 cc showed better survival rate. Conclusion: In terms of survival, the efficacy of stereotactic radiation therapy using CK was found to be superior or similar to other recent studies achieved with conventional RT with intensive chemotherapy, high dose conformal RT, intraoperative RT (IORT), or intensity modulated RT (IMRT). Furthermore, severe toxicity was not observed. Short treatment time in relation to the short life expectancy gave patients more convenience and, finally, quality of life would be increased. Consequently, this could be regarded as an effective novel treatment modality for locally advanced, unresectable pancreas cancer. PTV would be a helpful prognostic factor for CK.

Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery (LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포)

  • Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • Radiosurgery treatment in the brain requires detailed information on three-dimensional dose distribution. A three-dimensional treatment planning is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. Three-dimensional dose models for non-coplanar moving arcs were developed using measured single beam data and efficient 3-D dose algorithms for circular fields. The implementation of three dimensional dose algorithms with stereotactic radiosurgery and the application of the algorithms to several cases are discussed.

  • PDF

Effects of Fractionated Stereotactic Radiotherapy for Primary Hepatocellular Carcinoma (원발성 간암의 분할 정위방사선치료 효과)

  • Choi Byeong Ock;Kang Ki Mun;Jang Hong Seok;Lee Snag-wook;Kang Young Nam;Chai Gyu Young;Choi Ihl Bhong
    • Radiation Oncology Journal
    • /
    • v.23 no.2
    • /
    • pp.92-97
    • /
    • 2005
  • Purpose : Reports on the outcome of curative radiotherapy for the primary hepatocellular carcinoma (HCC) are rarely encountered in the literature. in this study, we report our experience of a clinical trial where fractionated stereotactic radiotherapy (SRT) was used in treating a primary HCC. Materials and Methods : A retrospective analysis was peformed on 20 patients who had been histologically diagnosed as HCC and treated by fractionated SRT. The long diameter of tumor measured by CT was $2\~6.5$ cm (average: 3.8 cm). A single dose of radiation used in fractionated SRT was S or 10 Gy: each dose was prescribed based on the planning target volume and normalized to $85\~99\%$ isocenter dose. Patients were treated $3\~5$ times per week for 2 weeks, with each receiving a total dose of 50 Gy (the median dose: 50 Gy). The follow up period was $\~55$ months (the median follow up period: 23 months). Results : The response rate was $50\%$ (12 patients), with 4 patients showing complete response ($20%$), 8 patients showing partial response ($40\%$), and 8 patients showing stable disease ($40\%$). The 1-year and 2-year survival rates were $70.0\%$ and $43.1\%$, respectively, and the median survival time was 20 months. The 1-year and 2-year disease free survival rates were $65\%$ and $32.5\%$, respectively, and the median disease-free survival rate was 19 months. Some acute complications of the treatment were noted as follows: dyspepsia in 12 patients ($60\%$), nausea/emesis in 8 patients ($40\%$), and transient liver function impairment in 6 patients ($30\%$). However, there was no treatment related death. Conclusion : The study indicates that fractionated SRT is a relatively safe and effective method for treating primary HCC. Thus, fractionated SRT may be suggested as a local treatment for HCC of small lesion and containing a single lesion, when the patients are inoperable or operation is refused by the patients. We thought that fractionated SRT is a challenging treatment modality for the HCC.

Optimization of Total Arc Degree for Stereotactic Radiotherapy by Using Integral Biologically Effective Dose and Irradiated Volume (정위방사선치료 시 적분 생물학적 유효선량 및 방사선조사용적을 이용한 Total Arc Degree의 최적화)

  • Lim Do Hoon;Lee Myung Za;Chun Ha Chung;Kim Dae Yong
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.199-204
    • /
    • 2001
  • Purpoe : To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. Methods and Materials : With Xknife-3 planning system & 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, $100^{\circ},\;200^{\circ},\;300^{\circ},\;400^{\circ}C,\;500^{\circ},\;600^{\circ}$ or total arc degrees, and $30^{\circ}\;or\;45^{\circ}$ or arc intervals were used. After the completion of planning, the plans were compared each other using $V_{50}$ (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. Results : At $30^{\circ}$ of arc interval, the values of $V_{50}$ had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 arc interval, up to $400^{\circ}$ of total arc degree, the values of $ V_{50}$ decreased with the increase of total arc degree, but at $500^{\circ}\;and\;600^{\circ}$ of total arc degrees, the values increased. At $30^{\circ}$ of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At $45^{\circ}$ arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with n and n mm or collimator diameters, up to $400^{\circ}$ or total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at $500^{\circ}\;and\;600^{\circ}$ of total arc degrees, the values increased. Conclusion : In the stereotactic radiotherapy planning for brain lesions, planning with $400^{\circ}$ of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of $500^{\circ}\;and\;600^{\circ}$ of total arc degrees make the increase of$V_{50}$ and integral biologically effective dose. Therefore stereotactic radiotherapy planning using $400^{\circ}$ of total arc degree can increase the therapeutic ratio and produce the effective outcome in the management of personal and mechanical sources in radiotherapy department.

  • PDF

Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT (체부 정위방사선치료 시 호흡운동 감소를 위한 복부 압박기구 개발 및 유용성 평가)

  • Hwang, Seon-Bung;Kim, Il-Hwan;Kim, Woong;Im, Hyeong-Seo;Gang, Jin-Mook;Jeong, Seong-Min;Kim, Gi-Hwan;Lee, Ah-Ram;Cho, Yu-Ra
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. Materials and Methods: We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. Results: A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. Conclusion: In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration can be coped with when CTV-PTV margins of mean 6 mm would be used. And we conclude that the respiratory motion reduction compression belt we developed can be used for clinical effective aids along with the gating system.

  • PDF

Setup Verification in Stereotactic Radiotherapy Using Digitally Reconstructed Radiograph (DRR) (디지털화재구성사진(Digitally Reconstructed Radiograph)을 이용한 정위방사선수술 및 치료의 치료위치 확인)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • Purpose :To develop a method for verifying a treatment setup in stereotactic radiotherapy by ma- tching portal images to DRRs. Materials and Methods : Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mask frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anteriorfposterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned iso-center and fiducial markers are printed out on transparent films. And then, they were overlaid over onhogonal penal images by matching anatomical structures. From three different kind of objects (isgcenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), the displacement error between anatomical structure and fiducial markers (irnrnobiliBation error), and the displacement error between fiducial markers and isocenters (localization error) were measured. Results : Localization error were 1.5$\pm$0.3 mm (AP), 0.9$\pm$0.3 mm (lateral), and immobilization errors were 1.9$\pm$0.5 mm (AP), 1.9$\pm$0.4 mm (lateral). In addition, overall setup errors were 1.0$\pm$0.9 mm (AP), 1.3$\pm$0.4 mm (lateral). From these orthogonal displacement errors, maximum 3D displacement errors($\sqrt{(\DeltaAP)^{2}+(\DeltaLat)^{2}$)) were found to be 1.7$\pm$0.4 mm for localization, 2.0$\pm$0.6 mm for immobilization, and 2.3$\pm$0.7 mm for overall treatment setup. Conclusion : By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy.

  • PDF

Confirmation of the Dose Distribution by Stereotactic Radiosurgery Technique with a Multi-purpose Phantom (다용도 팬톰에서 정위방사선수술기법의 선량 정확도 확인)

  • Yoo Hyung Jun;Kim Il Han;Ha Sung Whan;Park Charn Il;Hur Sun Nyung;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.179-185
    • /
    • 2002
  • Purpose : For the purpose of quality assurance of self-developed stereotactic radiosurgery system, a multi-purpose phantom was fabricated, and accuracy of radiation dose distribution during radiosurgery was measured using this phantom. Materials and Methods : A farmer chamber, a 0.125 cc ion chamber and a diode detector were used for the dosimetry. Six MV x-ray from a linear accelerator (CL2100C, Varian) with stereotactic radiosurgery technique (Green Knife) was used, and multi-purpose phantom was attached to a stereotactic frame (Fisher type). Dosimetry was done by combinations of locations of the detectors in the phantom, fixed or arc beams, gantry angles $(20^{\circ}\~100^{\circ})$, and size of the circular tertiary collimators (inner diameters of $10\~40\;mm$). Results : The measurement error was less than $0.5\%$ by Farmer chamber, $0.5\%$ for 0.125 cc ion chamber, and less than $2\%$ for diode detector for the fixed beam, single arc beam, and 5-arc beam setup. Conclusion : We confirmed the accuracy of dose distribution with the radiosurgery system developed in our institute and the data from this study would be able to be effectively used for the improvement of quality assurance of stereotactic radiosurgery or fractionated stereotactic radiotherapy system.

Fractionated Stereotactic Radiation Therapy for Intracranial Benign Tumor : Preliminary Results of Clinical Application (양성 뇌종양의 분할정위 방사선치료 : 임상적 응용의 예비적 결과)

  • Kim Dae Yong;Ahn Yong Chan;Huh Seung Jae;Choi Dong Rak;Nam Jong Hyun;Lee Jung Il;Park Kwan;Nam Do-Hyun;Kim Moon Kyung
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.185-194
    • /
    • 1998
  • Purpose : With the development of stereotactic immobilization systems capable of reliable serial repositioning, fractionated stereotactic radiation therapy (FSRT) offers the Potential for an improved treatment outcome by excellent dose delivery, and dose distribution characteristics with the favorable radiobiological properties of fractionated irradiation. We describe our initial experience using FSRT for the treatment of intracranial benign tumor. Materials and Methods : Between August 1995 and December 1996. 15 patients(7 males and 8 females aged 6-70 years) were treated with FSRT. The patients had the following diagnosis pituitary adenoma(10) including one patient who previously had received radiotherapy, craniopharyngioma (2), acoustic neurinoma (1), meningioma (2). Using the Gill-Thomas-Cosman relocatable head frame and multiple non-coplanar therapy, the daily dose of 2Gy was irradiated at 90% to 100% isodose surface of the isocenter The collimator sizes ranged from 26mm to 70mm. Results : In all patients except one follow-up lost, disease was well-controlled. Acute complication was negligible and no patient experienced cranial nerve neuropathies and radiation necrosis. In overall patient setup with scalp measurements, reproducibility was found to have mean of $1.1{\pm}0.6mm$ from the baseline reading. Conclusion : Relocatable stereotactic system for FSRT is highly reproducible and comfortable. Although the follow-up period was relatively short. FSRT is considered to be a safe and effective radiation technique as the treatment of intracranial tumor. But the fractionation schedule(fraction size, overall treatment time and total dose) still remains to be solved by further clinical trials.

  • PDF