• Title/Summary/Keyword: 정시 렌즈

Search Result 25, Processing Time 0.022 seconds

The Clinical Study on Spectacle Wearers of Highschool Students (고등학생 안경착용자의 착용상태에 관안 임상적 연구)

  • Kim, Sang-Kyun;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2004
  • The purpose of this study is to survey spectacle wearers's way of thinking through the questionaire and to investigate their wearing conditions through fitting conditions, the pantascopic angle, vertex distance, the coincidence of vertical and horizontal distance between optical center of the lens and pupillary distance of the eye in random selected 150 ametropic corrective wearers in the age of 17 to 19. The results are as follows : 1. The most popular causes of physical complaints in the ex-wearing spectacle are frame pressure(34.0%), slipping forward(30.0%) and most popular visual complaints are blur vision(30.0%) and asthenopia(20.0%). 2. The most common physical or visual complaints in the present wearing spectacle are slipping forward(30.0%), pressure (50.0%), color(10.0%). 3. Myopic glasses wearers accounted for 56.7% of the subjects, the others were compound myopic astigmatism. In 60% of the subjects' binocular diopter did not coincide. 4. In the pantascopic angle of the both eyes coincide in 66.7% of the subjects. The average of pantascopic angle is $10.07^{\circ}$. 5. In the vertex distance of the both eyes coincided in 65.3% of the subjects. the he average of vertex distance is 13.6 mm. 6. Among 150 eyes with monocular, the vertical distance between optical center of the lens and pupillary distance of the eye is within the RAL-RG 915 that is tolerance of ophthalmic dispensing in German Standards in 82 eyes (54.6%). 7. Among 150 eyes with monocular, the horizontal distance between optical center of the lens and pupillary distance of the eye is within the RAL-RG915 that is tolerance of ophthalmic dispensing in German Standards in 86 eyes(57.3 %).

  • PDF

Comparison on Accommodative Response Changes in the Normal Group and Convergence Insufficiency (정상군과 폭주부족군에서 조절반응 변화량의 비교)

  • Kwak, Ho-Weon;Lee, Se-Hee;Kwak, Hyung-Bin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.79-85
    • /
    • 2014
  • Purpose: This study investigated accommodative changes by measuring accommodative response, appearing on the normal and convergence insufficiency Group, by using both eyes open-view auto-refractometer (Nvision-K5001, shin-nippon, Japan). Methods: It carried out objective and subjective refractions, targeting 74 college students (54 males and 20 females) aged between 19 and 29 ($21.59{\pm}2.53$), spherical equivalent OD $-2.28{\pm}2.03$ D, OS $-2.18{\pm}2.01$ D, by measuring accommodative responses at full correction and under correction with plus lens +0.25, +0.50, +0.75 arbitrarily added. Results: In the group of normal and convergence insufficiency, the shorter fixation distances were, the greater accommodative lags showed. The group of convergence insufficiency showed the lesser changes of accommodative response than those of normal. But we found that the convergence insufficiency group had a little larger accommodative amplitude in the total fixation distances. The full correction of convergence insufficiency group and the under correction (+0.50 D) of normal were alike in the accommodative responses. We have also investigated that the correlation between accommodative responses and fixation distances was decreased steeply at the excessive low vision correction. Conclusions: Under correction (+0.50 D) in a near distance is expected to avoid unnecessary accommodative responses, make eyes relaxed and comfortable.

A Study of Eye Refractive Error of high school students in the North Kyoungki (경기북부지역 고등학생의 안굴절상태 조사 및 연구)

  • Choi, Hae Jung;Chen, Ko Hsien;Cha, Jung Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • We compared the study of refractive error of the eyes done in 1998 with that reported three years ago at any high school in the north Kyungki. From the these data, the distribution of ammetropia was investigated. The study of refractive error for high school students was also compared with those reported before for the Adults and the middle school student. When the refractive error is refered to spherical equivalent, the 40.6% of the whole students examined above had emmetropia and the other part of them(59.4%) turned out to be ammetropia which is classified to 46.4% belonged to myopia and 13.0% belonged to hyperpia. The ratio of emmetropia for the students in 1998 is 4.4% lower, and the ratio of hyperopia is 4.3% lower, but the ratio of myopia for the students in 1998 is 8.7% higher than that for the student in 1995. In the kind of refracive error, it is classified that a simple myopia is shown to highest ratio as a 23.6% of 6143 eyes examined, a compound myopic astigmatism to the next high ratio as a 17.4%, a simple myopic astigmatism as 10.9%, a simple hyperopic astigmatism as 9.8%, a simple astigmatism as 7.1%, a compound hyperopic astigmatism as 2.2%, a mixed astigmatism as a 1.8%, respectively. The percentage of an astigmatism is a 69.6% of total eyes examined if Cyl-0.25 Dptr is included to an astigmatism. On the other hand. The percentage of an astigmatism is a 45.0% of total eyes examined if Cyl-0.25 Dptr is excluded to an astigmatism. In the kind of astigmatism, the number of students had an astigmatism with the rule is about 5.6 times than that of astigmatism against the rule. From the result of comparison the right eye with the left eye, the right eye of the students had more a myopic refractive error than the left eye, which is same as adults' case.

  • PDF

Trends and Refractive Status of Cataract Surgery - An Optometry Clinic-Based Survey in Chungbuk (백내장 수술 경향과 굴절상태 - 충북 지역의 안경원 중심으로 조사)

  • Kim, Hyeong-Su;Son, Jeong-Sik;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.143-148
    • /
    • 2013
  • Purpose: The aim of this study was to investigate the distribution of age and gender, types of intraocular lens (IOL), and refractive errors in subjects who had cataract surgery. Methods: 2,217 subjects who had cataract surgery were surveyed at an optometry clinic in Chungbuk from 2010 to 2012. Information about IOL was obtained from case history, reflective and retroillumination images IOL by auto refracto-keratometer. Refractive errors were determined by objective and subjective refraction. Results: The mean age of the subjects was $71.74{\pm}10.62$ years. The number of cataract surgeries increased from 524 persons in 2010 to 888 persons in 2012. Of the subjects surveyed, 52 persons (2.3%) were under the 40 years of age, 144 persons (6.5%) were in 50s, 404 persons (18.2%) were in 60s, 1,132 persons (51.1%) were in 70s, 485 persons (21.9%) were in above 80s. Cataract surgery was significantly prevalent in more female (1,338 persons, 60.4%) than in male (879 persons, 39.6%). Types of IOL were 2,141 persons (96.6%) for monofocal lens, special IOLs such as multifocal, accommodative and toric lens were 76 persons (3.4%). The distribution of refractive errors after cataract operation were 1,588 eyes (38.5%) for simple myopic astigmatism, 327 eyes (7.9%) for simple hyperopic astigmatism, 601 eyes (14.6%) for mixed astigmatism, 1,240 eyes (30.0%) for myopia, 136 eyes (3.3%) for hyperopia, and 234 eyes (5.7%) for emmetropia. The uncorrected and best corrected visual acuity of the subjects were $0.55{\pm}0.25$ and $0.80{\pm}0.23$, respectively. Conclusions: The prevalence of cataract surgery increased with age until 70s years of age, it was more prevalent in men than women over 60s, and frequency of special types of IOL were low. Most cataract surgeries left residual refractive errors. Therefore even after cataract surgery it may need spectacles for better vision at either distance or near.

Assessment of Visual satisfaction & Visual Function with Prescription Swimming goggles In-air and Underwater (도수 수경 착용시 실내와 수중에서의 시각적 만족도 및 시력 평가)

  • Chu, Byoung-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.357-363
    • /
    • 2013
  • Purpose: To investigate the visual function with prescription swimming goggles. Methods: 15 university students (mean age: $22{\pm}1.54$ years) participated, with a mean distance refractive error of RE: S-1.67 D/C-0.40 D, LE: S-1.70D/C-0.37 D. Inclusion criteria were no ocular pathology, able to wear soft contact lenses to correct their refractive error to emmetropia and able to swim. Participants were fitted with contact lenses to correct all ametropia. Subjective evaluation for satisfaction of visual acuity, asthenopia and balance were also measured using a questionnaire while wearing swimming goggles with cylinder (C+1.50 D, Ax $90^{\circ}$) compared with plano sphere outside the swimming pool area. Visual acuity was assessed using the same ETDRS chart. The prescription swimming goggles powers were assessed in random order and ranged in power from S+3.00 D to S-3.00 D in 0.50 D steps. Results: Subjective evaluation was significantly worse for the swimming goggles with cylinder than for the plano powered goggles for all 3 questions, visual acuity, asthenopia and balance. Visual acuity were significantly affected by the different power of the swimming goggles (p<0.05), but there was no significant difference between the in-air in-clinic and underwater in-swimming pool measures (p=0.173). However, visual acuity measured in the clinic was significantly better than underwater for some swimming goggle powers (+3.00, +1.00, +0.50, 0, -1.00 and -2.00 D). Conclusions: Wearing swimming goggles underwater may degrade the visual acuity compared to within air but as the difference is less than 1 line of Snellen acuity, and it is unlikely to result in significant real-life effects. Having an incorrect cylinder correction was found to be detrimental resulting in lower score of satisfaction. Considering slippery floor of swimming pool area, it can be a potential risk factor. Therefore, it is important to correct any refractive error in addition to astigmatism for swimming goggle.