• Title/Summary/Keyword: 정성적 설계

Search Result 775, Processing Time 0.029 seconds

A Comparative Study on the Science Curriculum between Korea and Estonia: Focusing Chemistry Domain (한국과 에스토니아의 과학 교육과정 비교 연구: 화학 영역을 중심으로)

  • Kim, Hyunjung;Kim, Sungki
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.5
    • /
    • pp.347-357
    • /
    • 2021
  • The purpose of this study is to compare and analyze the science curriculum of Korea and Estonia with a focus on the chemistry domain, and draw implications for reference when revising the next curriculum. To this end, the overall curriculum design centered on science subjects and the core concepts of chemistry covered in subjects corresponding to the common curriculum of the two countries were compared. As a result of the analysis, first, Estonia specifically suggested how the core competencies suggested in the general lecture were specifically connected to science subject. In addition, there was a characteristic that the inquiry function, attitude, and value were specifically presented in the curriculum document. Second, as a result of analyzing the core concepts of chemistry, most of the concepts dealt with in Korea were also dealt with in Estonia. However, Estonia has a tendency to deal more qualitatively with broader concepts. The concepts covered in the chemistry subject exceeded the level of the common curriculum in Korea, but this subject also had the characteristic of attempting a qualitative approach.

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Rational Evaluation of Seismic Response Modification Factor of Steel Moment Frame Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 철골모멘트골조의 반응수정계수 산정법)

  • Lee, Cheol-Ho;Kim, Geon-Woo;Song, Jin-Gyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.11-17
    • /
    • 2007
  • In current seismic design practice, the response modification factor (R-factor) is used as a factor to reduce the elastic base shear demand to the design force level. As is well-known, the R-factor is a committee-consensus factor and, as such, highly qualitative and empirical. The relationship between the R-factor and the connection rotation capacity available in a particular structural system has remained a missing link. In this paper, a rational procedure to evaluate the R-factor is proposed. To this end, the relationship between the available connection rotation capacity and the R-factor is defined and quantified using nonlinear pushover analysis. An RRS steel frame designed according to IBC 2000 was used to illustrate and verify the proposed procedure. Nonlinear time history analysis results indicated that the R-factor definition proposed in this study is generally conservative from design perspective.

Quantitative Deterioration and Maintenance Profiles of Typical Steel Bridges based on Response Surface Method (응답면 기법을 이용한 강교의 열화 및 보수보강 정량화 이력 모델)

  • Park, Seung-Hyun;Park, Kyung Hoon;Kim, Hee Joong;Kong, Jung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.765-778
    • /
    • 2008
  • Performance Profiles are essential to predict the performance variation over time for the bridge management system (BMS) based on risk management. In general, condition profiles based on experts opinion and/or visual inspection records have been used widely because obtaining profiles based on real performance is not easy. However, those condition profiles usually don't give a good consistency to the safety of bridges, causing practical problems for the effective bridge management. The accuracy of performance evaluation is directly related to the accuracy of BMS. The reliability of the evaluation is important to produce the optimal solution for distributing maintenance budget reasonably. However, conventional methods of bridge assessment are not suitable for a more sophisticated decision making procedure. In this study, a method to compute quantitative performance profiles has been proposed to overcome the limitations of those conventional models. In Bridge Management Systems, the main role of performance profiles is to compute and predict the performance of bridges subject to lifetime activities with uncertainty. Therefore, the computation time for obtaining an optimal maintenance scenario is closely related to the efficiency of the performance profile. In this study, the Response Surface Method (RSM) based on independent and important design variables is developed for the rapid computation. Steel box bridges have been investigated because the number of independent design variables can be reduced significantly due to the high dependency between design variables.

Analysis and Trend Curve Derivation of Major Design Parameters of Unmanned and Manned Rotorcrafts (유.무인 회전익기 주요 설계변수의 추세선 식 유도 및 비교 분석 연구)

  • Hwang, Chang-Jeon;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.26-35
    • /
    • 2006
  • Design parameters of manned and unmanned rotorcrafts have been investigated to construct a design database and to derive trend curves. Design parameters of 78 manned rotorcrafts and 33 unmanned rotorcrafts have been collected and analyzed using linear regression method. Six kinds of trend curves equations are derived. Most of trend curves derived are relatively meaningful according to the calculated correlation and determination coefficients. The comparisons between manned and unmanned rotorcraft characteristics are performed. It has been drawn according to the comparisons that unmanned rotorcraft has smaller main rotor diameter and maximum take-off weight, bigger tail rotor size and similar level of empty weight fraction than manned rotorcraft.

A Logical Model of Collision Response for Simulation of the Virtual Environment (가상환경의 시뮬레이션을 위한 충돌반응 양상의 논리적 모델링)

  • Kim Byung-Ju;Park Jong-Hee
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.821-830
    • /
    • 2004
  • In this paper, we model the downward collision of a falling object to the base. We aim to provide maximum diversity of response to physical. collision. To this end, the primary design concern of the model is to unfold the collision phenomenon in a logical and natural manner, detailed enough to construct an immersive virtual environment. To achieve these requirements, first we determine domains for the characteristic of the material of the falling objects, and select the dominant force of the collision. We formulate the collision phenomena with combination of primitive attributes and their relationships. The formulated function evaluates the results of the collision in qualitative aspects as well as in quantitative aspects. Between the collision issues, 'Collision Detection' and 'Collision Response', this paper focuses on Collision Response issue.

Evaluation on Performance Level of Design-Build and Design-Bid-Build (Focused on Bridge Construction Projects) (발주방식에 따른 성능수준 평가에 관한 연구)

  • Cho, Kyu-Man;Kim, Hee-Wook;Hyun, Chang-Taek;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.2
    • /
    • pp.75-83
    • /
    • 2007
  • Recently, the Design-Build (DB) delivery method in public sector makes some argument by reason of the initial cost which is more higher than those of Design-Bid-Build (DBB). According to the results of pervious researches related to the performance evaluation of delivery method, DB can lead the reduction of project cycle time and also is superior to the traditional DBB in terms of construction quality. The performance on each delivery method could be generally evaluated by a project cost and a project cycle time as one of quantitative analyses, and also by construction quality as one of qualitative analyses. In most researches, the evaluation of performance level based on delivery methods has been evaluated by the degree of their satisfaction through the interview with owners. Therefore, this paper analyzed the design documents of construction projects delivered by traditional DBB and DB in bridge construction projects in order to measure design quality, constructability, maintainability, and etc. As an above-mentioned analyses, finally, this research shown that how much the difference of performance level is by each delivery method.

Conceptual Design and Flight Testing of a Synchropter Drone (Synchropter 드론의 개념설계 및 비행시험)

  • Chung, Injae;Moon, Jung-ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.997-1004
    • /
    • 2020
  • A synchropter is a type of rotorcraft in which a pair of blades inclined with each other rotates in synchronization. Removing the tail rotor enables an efficient and compact configuration similar to a coaxial-rotor helicopter. This paper describes the design and flight test results of a small synchropter to examine the suitability of a drone system for the army. The synchropter in this paper is a small vehicle with a rotor diameter of 1.4m and a weight of 7kg and was assembled based on commercial parts to examine flight characteristics effectively. The flight control system adopted Pixhawk, which is designed based on an open-architecture. The model-based design technique is applied to develop the control law of the synchropter and a new firmware embedded on the Pixhawk. Through qualitative flight tests, we analyzed the flight characteristics. As a result of the analysis, we confirmed the possibility of application as a drone system of the synchropter.

A Study on Proposing the Harbor and Fishery Design Criteria for the Channel Width based on External Factors (외력에 따른 항로 폭 설정을 위한 항만 및 어항 설계기준에 관한 연구)

  • Dae-Han Lee;Yu-Min Kwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.184-193
    • /
    • 2024
  • Harbor and Fishery Design Criteria defines that ship routing should be designed to ensure safe ship navigation and easy maneuvering. The design of the channel width is one of the critical conditions in routeing of ships. For the criteria of the channel width, qualitative evaluation criteria are used in South Korea, whereas quantitative evaluation criteria are used in other countries. Environmental factors, such as winds, tidal currents, and waves directly or indirectly affect ship resistance when sailing. Depending on their strength the environmental factors may pose a threat to the safe navigation of ships. Thus, vessel traffic control was regulated in South Korea according to the Beaufort scale. In order to design the channel width to reflect the environmental factors closely related to the safe navigation of ships, quantitative evaluation criteria reflected with environmental factors were presented in other countries, however, these external factors were not considered in South Korea. This study analyzed the relationship between the channel width actually used by ships and environmental factors by using the trajectories of ships entering and leaving Mokpo Port. This study also suggested the required channel width according to tidal currents and compared it with the channel width design criteria of other countries.

SSQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark SQL (SSQUSAR : Apache Spark SQL을 이용한 대용량 정성 공간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-116
    • /
    • 2017
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner, which can derive new qualitative spatial knowledge representing both topological and directional relationships between two arbitrary spatial objects in efficient way using Aparch Spark SQL. Apache Spark SQL is well known as a distributed parallel programming environment which provides both efficient join operations and query processing functions over a variety of data in Hadoop cluster computer systems. In our spatial reasoner, the overall reasoning process is divided into 6 jobs such as knowledge encoding, inverse reasoning, equal reasoning, transitive reasoning, relation refining, knowledge decoding, and then the execution order over the reasoning jobs is determined in consideration of both logical causal relationships and computational efficiency. The knowledge encoding job reduces the size of knowledge base to reason over by transforming the input knowledge of XML/RDF form into one of more precise form. Repeat of the transitive reasoning job and the relation refining job usually consumes most of computational time and storage for the overall reasoning process. In order to improve the jobs, our reasoner finds out the minimal disjunctive relations for qualitative spatial reasoning, and then, based upon them, it not only reduces the composition table to be used for the transitive reasoning job, but also optimizes the relation refining job. Through experiments using a large-scale benchmarking spatial knowledge base, the proposed reasoner showed high performance and scalability.