Passive sonar signals mainly contain both normal and abnormal signals. The abnormal signals mixed with normal signals are primarily detected using an AutoEncoder (AE) that learns only normal signals. However, existing AEs may perform inaccurate detection by reconstructing distorted normal signals from mixed signal. To address these limitations, we propose an abnormal signal detection model based on a Recurrent Neural Network (RNN) and vector quantization. The proposed model generates a codebook representing the learned latent vectors and detects abnormal signals more accurately through the proposed search process of code vectors. In experiments using publicly available underwater acoustic data, the AE and Variational AutoEncoder (VAE) using the proposed method showed at least a 2.4 % improvement in the detection performance and at least a 9.2 % improvement in the extraction performance for abnormal signals than the existing models.
Detection of abnormal signal generally can be done by using features of normal signals as main information because of data imbalance. This paper propose an efficient method for abnormal signal detection using parallel AutoEncoder (AE) which can use features of abnormal signals as well. The proposed Parallel AE (PAE) is composed of a normal and an abnormal reconstructors having identical AE structure and train features of normal and abnormal signals, respectively. The PAE can effectively solve the imbalanced data problem by sequentially training normal and abnormal data. For further detection performance improvement, additional binary classifier can be added to the PAE. Through experiments using public acoustic data, we obtain that the proposed PAE shows Area Under Curve (AUC) improvement of minimum 22 % at the expenses of training time increased by 1.31 ~ 1.61 times to the single AE. Furthermore, the PAE shows 93 % AUC improvement in detecting abnormal underwater acoustic signal when pre-trained PAE is transferred to train open underwater acoustic data.
Journal of the Institute of Convergence Signal Processing
/
v.6
no.1
/
pp.23-26
/
2005
This paper describes the algorithm for deciding the status of the operating machines in the power plants. It is very important to decide whether the status of the operating machines is good or not in the industry to protect the accidents of machines and improve the operation efficiency of the plants. There are two steps to analyze the status of the running machines. First, we extract the features from the input original data. Second, we classify those features into normal/abnormal condition of the machines using the wavelet transform and the input RMS vector through the K-means algorithm. In this paper we developed the algorithm to detect the fault operation using the K-means method from the sound of the operating machines.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.5
/
pp.7-13
/
2020
This paper focuses on detecting abnormal patterns of respiration of humans. In this study, a contact-based device was used to acquire both normal and abnormal respiration signals. To this end, this paper reports the development of a monitoring system to investigate the respiratory status of humans in a normal environment. This work aims to classify the respiratory status, i.e., normal and abnormal status, quantitatively. The respiration signal is acquired using a contact-based medical device (BIOBPAC), and noise reduction is carried out before classifying the respiratory status. To reduce noise, a mixed filter that combines the Savitzky-Golay filter and Median filter is applied to the acquired respiration signals. The inter-class distance is maximized, and the intra-class distance is minimized. The proposed algorithm is straightforward and can be applied to a practical environment. In addition, the experimental results are provided to substantiate the proposed approach.
Journal of the Korean Data and Information Science Society
/
v.22
no.2
/
pp.197-206
/
2011
The ability to detect online abnormal events in signals is essential in many real-world signal processing applications. In order to detect abnormal events, previously known algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. In general, maximum likelihood and Bayesian estimation theory to estimate well as detection methods have been used. However, the above-mentioned methods for robust and tractable model, it is not easy to estimate. More freedom to estimate how the model is needed. In this paper, we investigate a machine learning, descriptor-based approach that does not require a explicit descriptors statistical model, based on support vector machines are known to be robust statistical models and a sequential optimal algorithm online support vector machine is introduced.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.399-402
/
1998
본 논문에서는 환자의 음성을 정상, 양성종양, 악성종양으로 분류하는 실험을 켑스트럼 파라미터를 통한 음원분리와 신경회로망을 이용하여 수행하고 그 결과를 보고한다. 기존의 장애음성 데이터베이스에는 정상음성과 양성종양의 경우만 수록되어 있었고 외국의 환자들을 대상으로 한 경우만 있었기 때문에 국내의 환자들에게 직접 적용할 경우 어떠한 결과가 나올지 예측하기가 어려웠다. 최근 부산대학교 이비인후과팀에서 수집한 국내의 정상, 양성, 악성종양의 경우에 대한 데이터베이스를 분석하고 신경회로망에 의해 분류함으로써 사람의 음성신호만에 의한 후두질환이 식별이 가능하였다. 본 실험에서는 식별 파라미터로 음성신호의 선형예측오차신호에 관한 켑스트럼으로부터 음원비인 HNRR을 구하여 Jitter, Shimmer와 함께 사용하였다. 신경회로망은 입, 출력 층과 한 개의 은닉층을 갖는 다층신경망을 이용하였으며, 식별은 두단계로 나누어 정상과 비정상을 분류한 후 다시 비정상을 양성과 악성으로 분류하였다[1].
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.1
/
pp.8-15
/
2005
The analysis of Rader signal that have non-linearity variable phase is signal that contact easily in several fields such as radar, telecommunication, seismic, sonar and biomedical applications. In generally, Non-stationary signal means that spectral characteristics are varying with time and instantaneous frequency is only one frequency or narrow range of frequencies varying as a function of time. Therefore, Instantaneous frequency is vary important variable that understanding physical characteristic of signal. This paper was describes continuous wavelet transform to determine instantaneous frequency at non-staionary signal and compare to existing method. When white noise or various frequency is overlapped each other in sign, existing method was can not decide corrected instantaneous frequency, but when used continuous wavelet transform, very well decide correctly frequency regardless of component of signal.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.5
/
pp.296-302
/
2021
This paper proposes an approach to the classification of respiratory states of humans based on visual information. An ultra-wide-band radar sensor acquired respiration signals, and the respiratory states were classified based on two-dimensional (2D) images instead of one-dimensional (1D) vectors. The 1D vector-based classification of respiratory states has limitations in cases of various types of normal respiration. The deep neural network model was employed for the classification, and the model learned the 2D images of respiration signals. Conventional classification methods use the value of the quantified respiration values or a variation of them based on regression or deep learning techniques. This paper used 2D images of the respiration signals, and the accuracy of the classification showed a 10% improvement compared to the method based on a 1D vector representation of the respiration signals. In the classification experiment, the respiration states were categorized into three classes, normal-1, normal-2, and abnormal respiration.
Communications for Statistical Applications and Methods
/
v.4
no.3
/
pp.617-628
/
1997
시계열 자료의 변이상태(transition status)에 대한 판별은 여러 분야에서 연구되고 있다. 하지만 변압기의 진동신호와 같이 특정한 시계열모형을 적합시키기 힘든 자료는 변이 상태에 대한 판별이 쉽지 않다. 본 논문에서는 정상적인 변압기에서 발생하는 진동신호에 대하여 각 주기별 최대값, 자기상관계수 및 편자기상관계수 등의 경험적 표본분포를 연구한 후, 이를 이용한 관리도를 만들어 변압기 진동신호의 변이상태에 대한 판별을 하였다. 이 방법은 품질관리의 관리도 이론을 시계열자료에 응용한 것으로 비정상적인 변압기 진동신호의 판별에 만족스러운 결과를 가져왔다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.3
/
pp.705-711
/
2013
QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, efficient QRS detection and PVC classification based on profiling method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. Also, we applied profiling method to classify each patient's normal cardiac behavior through hash function. The performance of R wave detection, normal beat and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 0.65% in normal beat classification error and 93.29% in PVC classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.