• Title/Summary/Keyword: 정보역전

Search Result 345, Processing Time 0.026 seconds

Analysis of Trade-off between Period Transformation and Scheduling Overhead in Mixed-Criticality System (혼합 중요도 시스템의 주기 변환과 스케줄링 오버헤드간의 트레이드오프 관계 분석)

  • Yun, Sangwoon;Lim, Jiseoup;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.3-5
    • /
    • 2022
  • 혼합 중요도(mixed criticality) 시스템은 안전에 중요한 기능을 우선시하도록 하는 추가적인 안전 요구사항이 존재한다. 그러나 기존 실시간 시스템의 설계로는 이를 만족하지 못하며, 높은 중요도 태스크가 다른 낮은 중요도 태스크로부터 간섭을 받아 데드라인 미스와 같은 문제를 일으키는 중요도 역전(criticality inversion) 문제가 발생할 수 있다. 이러한 중요도 역전 문제를 해결하기 위해 주기 변환(period transformation) 기법을 사용할 수 있지만, 스케줄링 오버헤드의 증가로 인해 오히려 전반적인 태스크의 응답시간이 증가하는 또 다른 문제가 발생하게 된다. 본 논문에서는 주기 변환과 스케줄링 오버헤드 간의 트레이드오프 관계를 설명하고, 실시간 리눅스 시스템에서 해당 문제점을 재연한 후 주기 변환의 적정선을 분석하고자 실험을 진행하였다. 그 결과, 중요도 역전 문제를 해결하기 위한 주기 변환을 그대로 적용할 경우, 문맥 교환이 48.7% 증가 및 스케줄링 오버헤드가 28.7% 증가로 인해 전반적인 응답시간이 증가하여 데드라인 미스가 다수 발생하는 결과를 확인할 수 있었다.

  • PDF

Alternate Learning Algorithm of Multilayer Perceptron (다중 계층 퍼셉트론의 교대학습 알고리즘)

  • Choi Bum-Ghi;Lee Ju-Hong;Park Tae-Su
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.325-328
    • /
    • 2006
  • 역전파 학습 방법은 속도가 느리고, 지역 최소점으로 빠져 수렴에 실패하는 경우가 많다고 알려져 있다. 이제까지 알려진 역전파의 대체 방법들은 수렴 속도와 인자에 따른 수렴의 안정성에 대한 불균형을 해소 하는데 치중했다. 기존의 전통적인 역전파에서 발생하는 위와 같은 문제를 해결하기 위하여, 본 논문에서는 적은 용량의 저장 공간만을 요구하며 수렴이 빠르고 상대적으로 안정성이 보장되는 알고리즘을 제안한다. 이 방법은 상위연결(upper connections), 은닉층-출력층(hidden to output), 하위 연결(lower connections), 입력층-은닉층(input to hidden)에 대해 개별적으로 훈련을 시키는 교대 학습 방법을 적용한다.

  • PDF

Visualization of Multi Layer Perceptron Backpropagation Learning (다층 퍼셉트론 신경망의 역전파 학습 시각화)

  • Oh, Ju-Min;Choi, Yong-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.19-20
    • /
    • 2017
  • 인공지능이 사회적으로 대두되면서 많은 양의 관련 연구가 시작되고 있다. 본 논문에서는 다층 퍼셉트론 신경망에서 역전파 학습의 진행 과정을 시각화 하는 것을 목표로 하고 있다. 다층 퍼셉트론 신경망은 학습의 진행 과정과 그 방식은 잘 알려져 있으나 각 신경의 값이 어떻게 변화되어 가는 지는 눈에 보이지 않는다. 이러한 과정에 대해 시각화를 통해 값이 변하는 과정을 눈으로 쉽게 관찰할 수 있도록 하는 것이 이 논문의 목표이다. 본 연구결과는 향후 다층 퍼셉트론 신경망을 기반으로 하는 다른 모델의 시각화에 대한 기초자료로 활용될 수 있을 것이다.

  • PDF

Stock Price Prediction Using Backpropagation Neural Network (역전파 신경망을 이용한 주가 예측)

  • 박사준;이상훈;고삼일;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 역전파 신경망(Backpropagation Neural Network)을 시계열 데이터인 주가 데이터를 이용한 주가 예측의 정확도를 향상시키기 위한 학습 방법으로 적용하였다. 실제 증권거래소의 종목 데이터에서 비교적 등락폭이 안정적인 각 산업분야별 5개 기업의 5일 이동평균선 데이터 240개를 훈련 데이터로, 20개는 테스트 데이터로 이용하였다. 선정된 입력 데이터를 은닉층의 개수와 은닉 노드의 개수 등을 달리 하면서 10,000번의 훈련을 통해서 실험 하였으며, 그 결과 1개의 은닉층을 사용한 네트워크1은 20개의 테스트 데이터 사이의 19개의 신호 중 14개를 예측하였고, 2개의 은닉층을 사용한 네트워크 2는 16개를 예측하였다. 시험 결과를 통해서 보듯이 은닉층을 2개 사용하였을 때 보다 좋은 실험 결과를 얻을 수 있었으며, 역전파 신경망 모델이 주가 예측에 적합하다는 것이 증명되었다.

  • PDF

A Priority Inversion Alleviation Mechanism caused by Inter-Core Client-Server Communication of AUTOSAR (AUTOSAR의 코어 간 클라이언트-서버 통신으로 인해 발생하는 우선순위 역전 현상 완화 기법)

  • Min, Woo-young;Kim, Jung-ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.19-22
    • /
    • 2018
  • 현재 자동차 산업계에서 AUTOSAR는 효율적인 차량용 소프트웨어 개발을 위해 필수로 적용되고 있으며 자동차의 실시간 요구사항을 만족시키기 위해 실시간 운영체제를 사용한다. 하지만 AUTOSAR에서 제공하는 코어 간 클라이언트-서버 통신은 클라이언트 태스크에서 보낸 서비스 요청을 FIFO 순서로 처리하기 때문에 우선순위가 높은 태스크의 서비스가 낮은 태스크의 서비스 때문에 늦게 처리될 수 있다. 이는 우선순위 역전 현상이며 서비스의 처리 결과를 기다리느라 우선순위가 높은 태스크의 응답시간이 지연되므로, 이 태스크가 차량 안전에 있어 중요하다면 치명적일 수 있다. 이 논문에서는 서비스의 처리 순서가 결과에 무관한 경우에 한해 우선순위 큐를 도입함으로써 이 문제를 해결하였다. 제안된 기법은 Infineon 사의 TC297 MCU와 ETAS 사의 AUTOSAR 소프트웨어에서 실험했으며 우선순위가 높은 태스크의 응답시간이 1.42%의 오버헤드를 통해 1.26배 감소하였다.

  • PDF

A Study of Radio Signal Tracking using Error Back Propagation (오차 역전파 알고리즘을 이용한 전파신호 추적 연구)

  • 김홍기;김현빈;신욱현;이원돈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.226-229
    • /
    • 2001
  • Radio signal tracking has been developed especially in military as well as in other industries. It is necessary that an adaptive system trace the signal varying its PRI and frequency. In this paper we proposed a system to adapt various PRI and frequency using a neural network model named Error Back Propagation. Fist we prepared learning data by separating signal into time intervals and did some experiments with the teaming data. We found that the system had good effectiveness in tracing varying PRI and frequency signals.

  • PDF

A Robust Propagation Algorithm for Function Approximation (함수근사를 위한 로버스트 역전파 알고리즘)

  • Kim, Sang-Min;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.747-753
    • /
    • 1997
  • Function approximation from a set of input-output parirs has numerous applications in scientiffc and engineer-ing areas.Multiayer feedforward neural networks have been proposed as a good approximator of noninear function.The back propagation (BP) algorithm allows muktiayer feedforward neural networks oro learn input-output mappongs from training samples.However, the mapping acquired through the BP algorithm nay be cor-rupt when errorneous trauning data are employed.In this paper we propose a robust BP learning algorithm that is resistant to the errormeous data and is capable of rejecting gross errors during the approximation process.

  • PDF

A Study on Analysis of Dynamic Generation of Initial Weights in EBP Learning (EBP 신경망 학습에서의 동적 초기 가중치 선택에 관한 연구)

  • Kim, Tea-Hun;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.35-38
    • /
    • 2006
  • 다층 퍼셉트론(MLP) 학습 이론인 오류 역전파 알고리즘은 델타룰과 최급 하강법을 사용하기 때문에 학습시 많은 시간이 소요된다는 단점을 가지고 있다. 때문에 신경망에서의 잘못된 초기 가중치 선택은 오류 역전파 알고리즘을 사용하는 신경망에서의 현격한 학습 성능저하를 발생시키게 된다. 본 논문에서는 학습시 오류 역전파 알고리즘의 수렴시간을 개선하기 위한 신경망의 동적 초기 가중치 선택 알고리즘을 제안한다. 이 알고리즘은 학습전 기존의 선택 가중치와 모든 가중치가 1.0 또는 -1.0 값을 가지는 가중치 집합에서 가중치 변동률을 선측정하여 이들 중 가장 변동률이 큰 경우를 초기 가중치 집합으로 선정하게 된다. 즉, 초기의 가중치 변동률을 차후 성능을 판단하는 지표로 사용하여 잘못된 가중치 선택으로 인한 최악의 학습효율의 가능성을 배제시키고 다층 신경망의 학습특성상 평균 이상의 학습효율을 보장하는 초기 가중치 선택방법이다.

  • PDF

The Design and Implementation of Advanced MuTexS For Minimizing Priority Inversion Time In uCOS (우선순위 역전시간 최소화를 위한 uCOS 에서의 확장 MuTexS 설계 및 구현)

  • Lee, Jae-Ho;Kim, Heung-Nam;Kim, Sun-Ja
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.659-662
    • /
    • 2001
  • 본 논문은 실시간 운영체제에서 높은 우선순위를 가지는 태스크가 낮은 우선순위를 가지는 태스크가 사용중인 공유자원을 기다리는 과정에서 발생하는 우선순위 역전현상을 해결하기 위한 효과적인 방법에 대해 언급한다. 우선순위 역전현상은 실시간 운영체제의 주요 특징인 태스크 수행 완료의 바운드 타임을 예측하기 어렵게 만들어 실시간 운영체제를 사용하는 가장 큰 목적인 결정성(determinism)을 보장 받지 못하게 된다. 이를 해결하기 위해 논문에서 구현된 커널은 비교적 크기가 작으면서도 실시간 운영체제의 핵심적 특징을 잘 갖추고 있는 uCOS(Micro C/OS) 커널을 사용하였으나, 유일한 우선순위만을 갖는 uCOS의 제약사항을 보완하고 Priority Inheritance protocol을 이용한 MuTexS (Mutual Exclusion Semaphore)를 구현 하기위해 커널의 자료구조를 확장하여 수정된 스케줄링 방식을 사용하였다.

  • PDF

Recursive Least Square Backpropagation Neural Network Algorithm for Rejection of Multi-path Fading Interference in DS/CDMA Communication Systems (DS/CDMA통신에서 다경로 페이딩 간섭 제거를 위한 반복적 최소 자승 역전파 신경망 알고리즘)

  • Kim, Gwang-Jun;Na, Sang-Dong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.4
    • /
    • pp.464-471
    • /
    • 1999
  • DS/CDMA 시스템은 이동통신 시스템에서 다중경로, 고의적인 반방해 전파 및 동일대역폭을 공유하기 위한 다중 사용자에 의해 발생되는 협대역 간섭과 부가적인 백색가우시안 잡음을 제거한다. 본 논문에서는 다계층 퍼셉트론을 기반으로 한 역전파 신경망을 이용한 정합필터 채널 모델이 DS/CDMA 이동 통신 시스템에서 직접 순차 확산 스펙트럼의 협대역 간섭을 고려하면서 신호 대 잡음비와 전송 전력비에 따른 컴퓨터시뮬레이션 결과는 역전파 신경망을 이용한 정합 필터의 비트 에러율이 직접 순차 확산 스펙트럼의 RAKE 수신기의 비트 에러 율보다 적음을 입증하였다.