• 제목/요약/키워드: 정보역전

검색결과 345건 처리시간 0.026초

신경망 학습과 Higher Order Autocorrelation을 이용한 홍채 인식 시스템 (Iris Recognition System Using Back-Propagation and Higher Order Autocorrelation)

  • 정유정;정채영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.895-898
    • /
    • 2004
  • 본 논문에서는 기존의 개인 식별 방법의 한계를 해결하는 대안으로 떠오르고 있는 생체인식 기술 중 인식률이 뛰어난 홍채인식 시스템에 대해 연구하고자 한다. 먼저 홍채인식 시스템의 구현을 위해 신호처리 분야에서 많이 사용되고 있는 wavelet 변환 중 Haar wavelet과 고차 국소 자기 상관 특징을 이용하여 홍채의 특징을 추출하여 특징벡터의 크기를 최소화 하였다. 또, 인식률을 높이기 위해 오류 역전파 학습 알고리즘을 이용하여 홍채패턴에 기반한 신원 확인 및 검증을 위한 개선된 방법을 제시하였다. 학습이 완료된 신경망에 대한 학습데이터와 테스트 데이터의 인식률을 실험한 결과 학습된 데이터는 평균 인식률 $97.4\%$, 테스트 데이터는 $95.5\%$의 인식률을 보였다.

  • PDF

기생체 숙주 이론 기반의 경쟁 공진화 신경망 (Competitive Co-Evolving Neural Network : Host and Parasites)

  • 박정은;박민재;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.142-144
    • /
    • 2003
  • 유전자 알고리즘을 사용하여 신경망의 가중치를 학습하는 방법은 역전파 알고리즘이 가지는 여러 가지 문제점을 해결하기 위해 제안되었으나, 유전자 알고리즘 역시 전역 탐색이 아니기 때문에 실세계의 데이터에 적용하기 어려운 가장 큰 장애 요소인 지역 최소점 문제를 완벽하게 해결할 수는 없다. 이러한 지역 최소점 문제를 완화하기 위해 본 논문에서는 기생체-숙주 공진화 현상을 기반으로 한 유전자 알고리즘을 사용한 경쟁 공진화 신경망 학습 방법을 제시하고 있다. 경쟁 공진화는 서로 다를 개체간의 경쟁적인 진화를 통해 궁극적으로 보다 적합도가 높은 개체가 생성되는 이론을 기반으로 하고 있다. 이러한 경쟁 공진화를 통한 신경망 가중치의 학습이 일반적인 유전자 알고리즘을 사용하여 신경망을 학습시키는 것보다 더욱 우수한 가중치 집단을 탐색할 수 있음을 두 종류의 기계 학습 데이터를 통해 입증하였다.

  • PDF

개선된 역전파 신경회로망을 이용한 온라인 필기체 숫자의 분류에 관한 연구 (On the Classification of Online Handwritten Digits using the Enhanced Back Propagation of Neural Networks)

  • 홍봉화
    • 정보학연구
    • /
    • 제9권4호
    • /
    • pp.65-74
    • /
    • 2006
  • The back propagation of neural networks has the problems of falling into local minimum and delay of the speed by the iterative learning. An algorithm to solve the problem and improve the speed of the learning was already proposed in[8], which updates the learning parameter related with the connection weight. In this paper, we propose the algorithm generating initial weight to improve the efficiency of the algorithm by offering the difference between the input vector and the target signal to the generating function of initial weight. The algorithm proposed here can classify more than 98.75% of the handwritten digits and this rate shows 30% more effective than the other previous methods.

  • PDF

신경망 기반의 멜로디 작곡법 (The Melody Composition by using Neural Network)

  • 조재영;김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.77-82
    • /
    • 2008
  • 본 논문에서는 대중음악 코드진행 과정에 있어서 패턴 분석을 이용하여 멜로디를 추가하는 방법을 소개한다. 먼저, 멜로디를 신경망의 입력으로 사용되는 비트패턴으로 변환하는 방법을 기술한다. 멜로디 추가 방법은 역전파 신경망 학습을 통해 멜로디 작곡 패턴을 학습시키고 학습 된 데이터를 바탕으로 멜로디를 생성하도록 설계하였다. 실험결과 신경망 학습을 이용한 컴퓨터의 작곡 가능성을 확인하였다.

  • PDF

간단한 신경회로망 구조를 갖는 비선형 PID 제어기 (Nonlinear PID Controller with Simple Neural Network Structure)

  • 정경권;김주웅;정성부;김한웅;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 춘계종합학술대회
    • /
    • pp.96-101
    • /
    • 1998
  • 많은 분야에서 널리 사용되고 있는 PID 제어기의 형태는 오차를 갖는 폐루프 시스템으로 구성되며, PID 제어기는 비례, 적분, 미분 제어기로 나누어진다. PID 제어기의 형태가 여러 가지로 제안되고 있지만 보다 중요한 것은 PID 제어기의 파라미터들을 어떻게 적절히 정하느냐 하는 파라미터 조정 문제이다. 실제로 산업 현장에 설치되어 있는 PID 제어기는 대부분 숙련된 기술자에 의해 수동 조작에 의한 시행 착오(trial and error) 법으로 동조되고 있다. 이 경우는 많은 노력과 시간이 소비되고, 외란(disturbance)이 첨가될 경우 적절히 동조된다는 보장도 없다. 본 논문에서는 이러한 문제를 해결하고자 신경회로망을 이용하여 PID 제어기의 파라미터를 동조하는 제어 방법을 제안하였다. 단일 뉴런으로 구성하여 구조가 간단하고, 학습에 의한 성능 개선이 가능하다. 오차 역전파(Error Back-Propagation) 알고리즘에 의하여 PID 파라미터가 되는 가중치를 자동 동조하는 방법이다. 제안한 방식의 유용성을 보이기 위해 DC 서보 모터와 비선형 시스템인 단일 관절 매니퓰레이터를 대상으로 시뮬레이션을 하였다.

  • PDF

오차역전파알고리즘을 사용한 이산푸리에변환에 의한 음성강조 시스템 (Speech Enhancement System by Discrete Fourier Transform Using Back-propagation Algorithm)

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.254-257
    • /
    • 2010
  • 본 논문에서는 신경회로망을 사용하여 이산푸리에변환에 의한 진폭성분과 위상성분을 복원하는 음성강조 시스템을 제안한다. 본 시스템은 신경회로망이 잡음이 부가된 음성신호의 이산푸리에변환의 진폭성분과 위상성분을 사용하여 학습된 후, 제안한 시스템은 배경잡음에 의하여 열화된 잡음이 부가된 음성신호를 강조한다. 배경잡음에 의하여 열화된 음성신호는 신경회로망을 사용하여 제안된 시스템에 의하여 강조되는 것을 실험결과로 증명하며, 제안한 시스템이 스펙트럼 왜곡율의 평가법을 사용하여 배경잡음에 의하여 열화된 음성신호에 대하여 효과적인 것을 실험으로 확인한다.

  • PDF

인공신경망을 이용한 숫자인식에 관한 연구 (A Study on Numerical Recognition Using Artificial Neural Network)

  • 전민혁;김병욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.511-514
    • /
    • 2019
  • 인공지능이 정형화된 수치 데이터뿐만 아니라 비정형 데이터까지도 인식해야하는 시대가 왔다. 보안 분야 이외에도 사회 전반에서 숫자 인식을 활용하고 점차 확대되고 있다. 숫자인식을 위해 인공신경망을 이용하였다. 인공신경망은 입력 층, 중간 층, 출력 층으로 이루어져 있다. 각 층은 노드와 노드들을 연결하는 가중치로 구성되어 있다. data set을 입력 값으로 하여 각각의 가중치를 곱한다. 오차역전파법을 이용하여 가중치 값을 갱신한다. 갱신하는 과정에서 학습률과 가중치 조정을 통해 결과 값의 정확도를 연구한다. 궁극적으로 학습된 data set과 인공신경망 알고리즘을 이용하여 손 글씨로 된 숫자를 인식한다. 실험에서 학습률과 중간층의 노드 개수를 조정하여 인식률을 높여간다.

GA-SVM을 이용한 결함 경향이 있는 소프트웨어 모듈 예측 (Predicting Defect-Prone Software Module Using GA-SVM)

  • 김영옥;권기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2013
  • 소프트웨어의 결함 경향 모듈 예측을 위해 SVM 분류기가 우수한 성능을 보인다는 연구들이 많지만, SVM에서 필요한 파라미터 선정 시 매 커널마다 다르게 선정해야 하고, 파라미터의 변경에 따른 결과예측을 위해 알고리즘을 반복적으로 수행해야 하는 불편함이 있다. 따라서 본 논문에서는 SVM의 파라미터 선정 시 유전알고리즘을 이용하여 스스로 찾게 하는 GA-SVM 모델을 구현하였다. 그리고 분류 성능 비교를 위해 신경망의 역전파알고리즘을 이용하여 분류했던 기존 논문과 비교 분석한 결과, GA-SVM 모델의 성능이 더 우수함을 확인하였다.

웨이브렛 변환과 RBF 신경망을 이용한 경로통행시간 예측모형 개발 -시내버스 노선운행시간을 중심으로- (Development of path travel time forecasting model using wavelet transformation and RBF neural network)

  • 신승원;노정현
    • 대한교통학회지
    • /
    • 제16권4호
    • /
    • pp.153-166
    • /
    • 1998
  • 본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.

  • PDF

SVM 을 이용한 화자의 감정상태 인식 (Recognition of Emotional State of Speaker Using Machine learning)

  • 이나라;최훈하;김현정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.468-471
    • /
    • 2012
  • 음성을 통한 자동화된 감정 인식은 편리하고 다양한 서비스를 제공할 수 있어 중요한 연구분야라고 할 수 있다. 기계학습의 다양한 알고리즘을 사용하여 감정을 인식하는 연구가 진행되어 왔지만 그 성능은 아직 초보적 단계를 벋어나지 못하고 있는 실정이다. 앞선 연구에서 우리는 비감독 학습 방법으로 감성을 그룹화 하고 이것을 이용하여 다시 감독 학습을 하는 시스템을 소개 하였다. 본 연구에서 우리는 감독 학습 방법에서 사용했던 오류 역전파 알고리즘을 support vector machine(SVM) 으로 변경하고 몇 가지 구조를 변경하여 기능을 개선하였다. 실험을 통하여 성능을 측정하였으며 어느 정도 개선된 결과를 얻을 수 있었다.