• 제목/요약/키워드: 정보서비스 구현

검색결과 6,347건 처리시간 0.04초

개인화 전시 서비스 구현을 위한 지능형 관객 감정 판단 모형 (The Intelligent Determination Model of Audience Emotion for Implementing Personalized Exhibition)

  • 정민규;김재경
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.39-57
    • /
    • 2012
  • 최근 기존 전시 공간 내에 유비쿼터스 환경이 구축되면서, 관객과의 상호작용을 통해 전시 효과를 배가할 수 있는 인터랙티브 전시에 많은 사람들의 관심이 집중되고 있다. 이러한 인터랙티브 전시가 보다 고도화되기 위해서는 전시물에 대한 다양한 관객 반응을 측정하고, 이를 통해 대상 관객이 어떤 감정을 느끼는지 예측할 수 있는 적절한 의사결정지원 모형이 요구된다. 이러한 배경에서 본 연구는 인터랙티브 전시 공간 내에서 수집 가능한 다양한 관객 반응 중 얼굴표정의 변화를 이용하여, 관객의 감정을 추론, 판단하는 지능형 모형을 제시한다. 본 연구에서 제시하는 모형은 무자극 상태의 관객의 표정과 자극이 주어졌을 때 관객의 표정이 어떻게 변화하는지 변화량을 측정하여, 이를 기반으로 인공신경망 기법을 이용해 해당 관객의 감정을 판단하는 모형이다. 이 때, 제안모형의 감정 분류체계로는 간결하면서도 실무에 적용이 용이하여 그간 기존 문헌에서 널리 활용되어 온 매력-각성(Valence-Arousal) 모형을 사용한다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 2011 서울 DMC 컬쳐 오픈 행사에 참여하여, 일반인을 대상으로 얼굴 표정 변화 데이터를 수집하고, 이들이 느끼는 감정 상태를 설문조사하였다. 그리고 나서, 이 자료들을 대상으로 본 연구에서 제안하는 모형을 적용해 보고, 제안모형이 비교모형으로 설정된 통계기반 예측모형에 비해 더 우수한 성과를 보이는지 확인해 보았다. 실험 결과, 본 연구에서 제시하는 모형이 비교 모형인 중회귀분석 모형보다 더 우수한 결과를 제공함을 확인할 수 있었다. 본 연구를 통하여 구축된 관객 감정 판단 모형을 실제 전시장에서 활용한다면 전시물을 관람하는 관객의 반응에 따라 시의적절하면서도 효과적인 대응이 가능하기 때문에, 관객의 몰입과 만족을 보다 증대시킬 수 있을 것으로 기대된다.

상호 대칭적 만족성을 고려한 온라인 데이트시스템 (A Match-Making System Considering Symmetrical Preferences of Matching Partners)

  • 박윤주
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.177-192
    • /
    • 2012
  • 최근 추천시스템에 대한 연구는 고객에게 적합한 상품을 추천하는 것에서 진일보하여, 고객이 선호할만한 친구나 배우자를 추천해주는 인맥 연결분야로 확장되고 있다. 이러한 인맥 연결의 주요한 분야로 미혼남녀를 소개시키는 온라인 데이트시스템을 생각할 수 있다. 본 연구는 사용자에게 적합한 데이트 상대를 추천해주는 온라인 매칭시스템을 제안한다. 제안된 시스템은 기존의 상품추천 시스템과는 다르게, 추천 받는 고객뿐만 아니라, 추천 되는 상대방의 호감도를 함께 고려하여, 양자가 상호 대칭적인 만족도를 갖도록 설계하였다. 또한, 인기인에게 추천이 편중되거나, 비인기인들이 추천에서 소외되지 않고, 시스템 참여자들이 전체적으로 일관된 추천 만족도를 가질 수 있도록 하였다. 본 연구에서 제안한 매칭 시스템은 Mutually Beneficial Matching(MBM) 시스템이라 명명하였으며, 이를 다른 두 일반적인 매칭 기법인 Preference-Based Matching(PBM) 기법 및 Arithmetic Mean-Based Matching(AMM) 기법과 비교하여 성능평가를 수행하였다. 즉, 위의 세 가지 기법을 Java를 사용하여 prototype으로 구현한 후, 가상의 미혼남녀 200명의 데이터에 적용하여 비교 분석하였다. 그 결과, 제안된 MBM 기법이 PBM 및 AMM 기법에 비하여 통계적으로 유의하게 높은 상호호감도(Mutual Preference)를 보임을 알 수 있었고, 호감도의 대칭성(Symmetric Ratio)도 대부분의 경우 높게 도출됨을 확인하였다. 뿐만 아니라, 제안된 MBM 기법은 PBM 기법보다 추천에서 소외된 고객 수(Number of Outsiders)가 적어서, 매칭 pool안의 사용자들에게 전체적으로 호혜적이고 일관된 추천서비스를 제공할 수 있을 것으로 기대된다.

GIS 산업에 있어서 지리학의 역할 및 수요에 대한 분석 (The Analyses of Geographers지 Roles and Demands in Korean GIS Industries)

  • 장은미
    • 대한지리학회지
    • /
    • 제39권4호
    • /
    • pp.643-664
    • /
    • 2004
  • 본고는 지리학의 사회참여라는 주제 하에 한국의 지리학 전공자가 GIS 산업에 기여한 것과 수행한 역할을 가늠해보고자 시작되었다. 후학들의 기대수준과 실제적인 지리정보시스템을 비 지리학자의 요구사항과의 간격을 최소화하기 위하여, GIS 산업 현장에서 인정하고 있는 자격증 사안에 대한 소개와 향후 GIS산업의 방향을 예측하는 자료를 생산하는 것이 본고의 목적이다. 한국의 GIS 산업의 시기별 특성과 각 단계에 있어 지리학 전공자의 기여도 정리하였으며, 주요기관별 지리학 전공자의 비중 및 수행업무에 관한 인터뷰를 실시하였다. 또한 GIS 사업에 관련된 공공기관의 2003년 2004년의 중장기 기술개발 및 사업개발 계획을 분석하여 차후에 GIS 산업방향을 예측할 수 있도록 하였다. 설문지를 통하여 산업계와 연구계의 수요분석을 시행하고 그 결과는 GIS 산업의 진출을 위한 지리학과의 GIS교육의 SWOT (강점, 약점, 기회, 위협)분석으로 정리하였다. 분석결과 실습과 프로그래밍 중심의 훈련이 강조된 반면, 지리학과의 강점에 해당되는 다양한 세계 지리적 지식, 인간과 환경을 아우르는 종합적 시각. 통합능력, 학제간 연구훈련 등은 저평가되고 있었다. 대기업에서의 지리학과 전공자의 비중이 오히려 높았으며 이는 중소기업이 보다 구체적인 프로그램 구현부분에 기술적으로 치중하기 때문이다. 텔레매틱스와 같이 신성장동력으로 일컬어지는 산업에 GIS가 일부 포함되어 있기에. 지리학과의 GIS 교육은 문화지리와 연계된 지역마케팅, GIS 교육 분야, 새로운 위치기반의 서비스 모형개발 등에 기회가 있다고 여겨지며. 이는 학제간 협력 보다는 지리학내의 협동연구를 통한 핵심 역량 강화에 치중해야할 것을 시사한다. 보여준다.57장, 보조지 1장)이었으나, 수리 후 가로 25.8cm, 세로 39.4cm, 책의 두께는 1.9cm, 판본 64장(본문 57장, 보조지 1장, 겉표지 앞과 뒤 각1장, 보호지 앞과뒤 각2장)으로 가로 0.5cm, 세로 0.5cm, 두께 0.4cm, 판본 6장이 증가하는 등의 외형적 변화가 발생하였다.Polyacrylamide gel disc 전기(電氣) 영동(泳動)에서 L-c fraction은 pH 4. 3 gel에서는 명확(明確)한 단일(單一)의 단백질(蛋白質) 밴드를 보여주었으나, pH 8.3 gel에서는 아직도 두 개의 이상(以上)의 밴드가 검출(檢出)되었다. 4. 그러나 L-c fraction은 효모(酵母) 세포벽(細胞壁)의 다당류(多糖類) 성분중(成分中)에서 오직 glucan에 대한 ${\beta}-1$, 3-glucanase의 기질(基質) 특이성(特異性)만을 나타내었다. 따라서 L-c fraction을 zymolyase의 부분(部分) 정제(精製) 표품(標品)으로써 용해(溶解) 촉진(促進) 인자(因子)에 관(關)한 연구(硏究)에 제공(提供)하고져 동결(凍結) 건조(乾燥)하였다. used for court dress and official uniforms in the royal court. 4. Sa(紗) and Ra(羅) whose features have been examined we Gapsa(甲紗), Sun-in (純仁), Gosa(庫紗), Gwansa(官紗), Jusa(走紗), Eunjosa(은조사), Gwangsa(廣紗), Waesa(倭紗), Dorisa(도리사), Gong-yangsa(공양사), Rasa(羅紗), Danghangra(唐亢羅),

방사선 종양학과에서 CR System을 이용한 PACS 유용성 평가 (Using CR System at the Department of Radiation Oncology PACS Evaluation)

  • 홍성일;김영재
    • 한국방사선학회논문지
    • /
    • 제6권2호
    • /
    • pp.143-149
    • /
    • 2012
  • 오늘날 의료영상매체의 획기적인 발전으로 각 병원에서 최신 의료장비를 도입함으로써 첨단화, 디지털화로 급변하는 추세이다. 이러한 움직임에 발맞추어 방사선 종양학과에서도 CR system을 도입하여 film system의 단점을 보완하고 병원에서 사용하고 있는 Picture Archiving and Communication System(PACS)과 Electronic Medical Record (EMR) , 그리고 Radiation therapy Treatment Planning system(RTP)의 network를 원활히 하여 업무효율 증대 및 환자에 대한 의료의 질 개선과 서비스 향상을 이루고자 하고 있는데, 방사선 종양학과의 Computed Radiography system(CR system)을 이용하여 PACS에 통합한 사례를 소개하고 그 유용성을 평가하고자 한다. 의료용 선형가속기인 MEVATRON-MX를 이용하여 현재 시행하고 있는 정도관리 중 Gantry, Collimator Star Shot, Light vs. Radiation Field Accuracy, HDR QA(Dwell position accuracy)를 시행하여 PACS 상에 구현하였고 모니터 상에서 디지털 영상을 통한 QA가 가능한지 확인하였다. 또한, 현재 S병원에서 사용 중인 Operation Control System(OCS)과 연동하여 치료에 필요한 코드를 각각의 치료에 부과하여 네트워크로 연결, CR상에 입력한 order가 나타나도록 하였으며, Planning System인 Pinacle과 PACS상의 지원 data 오류를 해결하여 PACS 상에서도 Planning 영상을 볼 수 있도록 하였다. CR system을 이용하여 L-gram, simulation image, planning image를 병원 내 어느 곳에서나 영상을 조회하고 볼 수 있게 PACS에 통합 구축되어있다. Filmless 환경에서 Dosimetry용 IP를 이용하여 Light/Radition field size 일치, gantry rotation axis의 정확성, collimator rotation axis의 정확성, brachy therapy의 Dwell position check등 QA의 시행이 가능하였다. CR system을 이용하여 방사선 종양학과에서 얻어지는 영상을 PACS에 통합함으로써 작업시간 단축과 그에 따른 불필요한 인력소모의 감소 등으로 인하여 업무효율이 증대되었지만 향후 환자정보에 대한 보안을 필요로 한다.

소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구 (Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company)

  • 김유신;권도영;정승렬
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.89-105
    • /
    • 2014
  • Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.

부록 3. 모션캡쳐를 이용한 무형문화재의 기록작성 - 국가지정 중요무형문화재 승무·살풀이·태평무를 중심으로 - (Documentation of Intangible Cultural Heritage Using Motion Capture Technology Focusing on the documentation of Seungmu, Salpuri and Taepyeongmu)

  • 박원모;고중일;김용석
    • 헤리티지:역사와 과학
    • /
    • 제39권
    • /
    • pp.351-378
    • /
    • 2006
  • 매체의 발달과 함께 무형문화재에 대한 기록도 여러 가지 방법으로 시도되고 있는데, 과거에는 문자 기록에만 의존하던 것에서 최근에는 사진, 음원 및 영상 등을 많이 활용하게 되었고, 그 방식에 있어서도 아날로그 방식에서 디지털 방식으로 이행하고 있는 추세이다. 이러한 변화의 과정에서 모션캡쳐를 이용한 무형문화재의 기록은 3차원적 기록을 필요로 하는 무용종목 등에서 주목을 받고 있다. 모션캡쳐란 움직이는 물체에 공간상의 위치를 표시하는 센서를 부탁시키고 시간의 흐름에 따라 센서의 위치를 컴퓨터의 좌표공간에 치환하여 기록하는 시스템으로, 모션캡쳐를 이용한 무형문화재의 기록은 형체가 없이 사람의 기예에 의해서 전승되고 있는 무형문화재의 신체적 표현을 디지털화 된 데이터로 나타내줌으써 무형문화재의 보존을 위한 과학적 자료를 제공해 준다. 국립문화재연구소는 멀티미디어 및 디지털 시대에 대응하기 위해 무형문화재에 대한 새로운 기록방안 개발을 목적으로 영화 및 게임 등의 CG제작 현장에서 널리 사용되고 있는 모션캡쳐(Motion Capture) 장비를 이용하여 국가지정의 중요무형문화재에 대한 기록 작업을 실시하고 있다. 본 사업은 복권기금을 사용하여 2005년부터 2007년까지 3개년에 걸쳐서 국가지정의 중요무형문화재 중 신체적 동작이 중요하게 표현되고 있는 무용 7개 종목 11건의 모션캡쳐 작업을 실시할 예정이다. 이미 1차 년도인 2005년에는 승무, 살풀이춤, 태평무 등 기술적 난이도가 낮은 독무(獨舞)를 중심으로 데이터 축적작업을 실시하였고, 2차 년도인 2006년에는 진주검무, 승전무, 처용무 등 군무(群舞)의 데이터를 축적할 예정이며, 3차 년도인 2007년에는 학연화대합설무의 데이터 축적과 함께 축적된 데이터를 이용한 무형문화재의 비교 분석 및 전승을 위한 교육용 프로그램과 대국민 서비스를 위한 3차원 콘텐츠 등을 개발할 계획이다. 본 보고서에서는 사업 초년도인 2005년도에 실시된 보유자 이매방, 이애주, 정재만의 승무, 이매방의 살풀이춤, 강선영의 태평무 등의 모션캡쳐 작업에 대하여 기술하고 있다. 이를 통하여 무형문화재에 대한 새로운 기록 방안을 모색하기 위한 시도를 소개하려고 한다. 이번 사업에서는 기술적으로 다음과 같은 두 가지 문제가 제기되었다. 첫 번째, 장시간(20~30분 가량)의 보유자의 춤을 끊김 없이 모션캡쳐 받을 수 있는가라는 문제였다. 수 차례의 사전 모의테스트를 통해 사업수행 적합성 판단을 마쳤고, 결국 사업수행을 무사히 마칠 수 있었다. 두 번째, 리타겟팅(RE-Targeting)이 없이 정확한 모션캡쳐 동작을 가공해 낼 수 있는가라는 문제였다. 모션캡쳐 데이터에서 국내 최초로 보유자의 골격구조 역추출 방식을 도입하여 최대한 정확한 보유자의 춤 동작을 구현해낼 수 있었다. 이번 작업에서는 이매방, 이애주, 정재만, 강선영 네 보유자의 전신 삼차원 스캔을 통해 정확한 삼차원 신체 모델링을 얻었고, 보유자 본인의 춤사위 동작을 그대로 모션캡쳐에 적용함으로써 최대한 정확도를 유도할 수 있었다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.