• Title/Summary/Keyword: 정보(情報) 검색(檢索)

Search Result 9,919, Processing Time 0.042 seconds

Designing an Intelligent Advertising Business Model in Seoul's Metro Network (서울지하철의 지능형 광고 비즈니스모델 설계)

  • Musyoka, Kavoya Job;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.1-31
    • /
    • 2017
  • Modern businesses are adopting new technologies to serve their markets better as well as to improve efficiency and productivity. The advertising industry has continuously experienced disruptions from the traditional channels (radio, television and print media) to new complex ones including internet, social media and mobile-based advertising. This case study focuses on proposing intelligent advertising business model in Seoul's metro network. Seoul has one of the world's busiest metro network and transports a huge number of travelers on a daily basis. The high number of travelers coupled with a well-planned metro network creates a platform where marketers can initiate engagement and interact with both customers and potential customers. In the current advertising model, advertising is on illuminated and framed posters in the stations and in-car, non-illuminated posters, and digital screens that show scheduled arrivals and departures of metros. Some stations have digital screens that show adverts but they do not have location capability. Most of the current advertising media have one key limitation: space. For posters whether illuminated or not, one space can host only one advert at a time. Empirical literatures show that there is room for improving this advertising model and eliminate the space limitation by replacing the poster adverts with digital advertising platform. This new model will not only be digital, but will also provide intelligent advertising platform that is driven by data. The digital platform will incorporate location sensing, e-commerce, and mobile platform to create new value to all stakeholders. Travel cards used in the metro will be registered and the card scanners will have a capability to capture traveler's data when travelers tap their cards. This data once analyzed will make it possible to identify different customer groups. Advertisers and marketers will then be able to target specific customer groups, customize adverts based on the targeted consumer group, and offer a wide variety of advertising formats. Format includes video, cinemagraphs, moving pictures, and animation. Different advert formats create different emotions in the customer's mind and the goal should be to use format or combination of formats that arouse the expected emotion and lead to an engagement. Combination of different formats will be more effective and this can only work in a digital platform. Adverts will be location based, ensuring that adverts will show more frequently when the metro is near the premises of an advertiser. The advertising platform will automatically detect the next station and screens inside the metro will prioritize adverts in the station where the metro will be stopping. In the mobile platform, customers who opt to receive notifications will receive them when they approach the business premises of advertiser. The mobile platform will have indoor navigation for the underground shopping malls that will allow customers to search for facilities within the mall, products they may want to buy as well as deals going on in the underground mall. To create an end-to-end solution, the mobile solution will have a capability to allow customers purchase products through their phones, get coupons for deals, and review products and shops where they have bought a product. The indoor navigation will host intelligent mobile-based advertisement and a recommendation system. The indoor navigation will have adverts such that when a customer is searching for information, the recommendation system shows adverts that are near the place traveler is searching or in the direction that the traveler is moving. These adverts will be linked to the e-commerce platform such that if a customer clicks on an advert, it leads them to the product description page. The whole system will have multi-language as well as text-to-speech capability such that both locals and tourists have no language barrier. The implications of implementing this model are varied including support for small and medium businesses operating in the underground malls, improved customer experience, new job opportunities, additional revenue to business model operator, and flexibility in advertising. The new value created will benefit all the stakeholders.

Performance Evaluation Method for Facility Inspection and Diagnostic Technologies (첨단기술을 활용한 시설물 점검 및 진단 기술 검·인증을 위한 성능평가 방법론)

  • Lee, Young-Ho;Bae, Sung-Jae;Jung, Wook;Cho, Jae-Yong;Hong, Sung-Ho;Nam, Woo-Suk;Kim, Young-Min;Kim, Jung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.178-191
    • /
    • 2020
  • Purpose: This paper proposes a performance evaluation method for state-of-the-art facility inspection/diagnostic equipment through a trend survey of equipment and standardization systems of US, Japan, and Korea. This paper also suggests the priority of developing a performance evaluation method through expert interviews and surveys. Method: In this study, report for the last 5 years of FMS, state-of-the-art equipment of facility maintenance companies/safety diagnosis specialist agencies and papers/research reports/patents of NTIS were analyzed to identify recent trends of facility inspection/diagnostic equipment usages. standardization system of US, Japan, and Korea were analyzed to figure out a suitable form of a performance evaluation method for the domestic situation. And expert interview and survey were conducted to identify the priority of developing a performance evaluation method. Result: The performance evaluation method must be developed by the shape that only evaluates performance, regardless of types of equipment, on inspection item level for creative technology development. The priority of developing the performance evaluation method was identified as crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete and steel for stability evaluation. Conclusion: The performance evaluation method will be developed firstly for the crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete/steel for stability evaluation. In order to promote creative technology development, the performance evaluation method should be developed in a form that provides standardized specimens or testbeds and can be applied regardless of types of technologies.

Study of Web Services Interoperabiliy for Multiple Applications (다중 Application을 위한 Web Services 상호 운용성에 관한 연구)

  • 유윤식;송종철;최일선;임산송;정회경
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.217-220
    • /
    • 2004
  • According as utilization for web increases rapidly, it is demanded that model about support interaction between web-based applications systematically and solutions can integrate new distributed platforms and existing environment effectively, accordingly, Web Services appeared by solution in reply. These days, a lot of software and hardware companies try to adoption of Web Services to their market, attenpt to construct their applications associationing components from various Web Services providers. However, to execute Web Services completely. it must have interoperability and need the standardization work that avoid thing which is subject to platform, application as well as service and programming language from other companies. WS-I (Web Services Interoperability organization) have established Basic Profile 1.0 based on XML, UDDI, WSDL and SOAP for web services interoperability and developed usage scenario Profile to apply Web Services in practice. In this paper, to verify suitability Web Services interoperability between heterogeneous two applications, have design and implements the Book Information Web Services that based on the Web Services Client of J2SE platform and the Web Services Server of .NET platform, so that analysis and verify the service by adaptation of WS-I Basic Profile.

  • PDF

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

A study on the classification of research topics based on COVID-19 academic research using Topic modeling (토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.155-174
    • /
    • 2022
  • From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 (

    ) were the topic modeling results for each research topic (
    ) was found to be derived from For example, as a result of topic modeling for papers related to 'vaccine', a new topic titled Topic 05 'neutralizing antibodies' was extracted. A neutralizing antibody is an antibody that protects cells from infection when a virus enters the body, and is said to play an important role in the production of therapeutic agents and vaccine development. In addition, as a result of extracting topics from papers related to 'treatment', a new topic called Topic 05 'cytokine' was discovered. A cytokine storm is when the immune cells of our body do not defend against attacks, but attack normal cells. Hidden topics that could not be found for the entire thesis were classified according to keywords, and topic modeling was performed to find detailed topics. In this study, we proposed a method of extracting topics from a large amount of literature using the LDA algorithm and extracting similar words using the Skip-gram method that predicts the similar words as the central word among the Word2vec models. The combination of the LDA model and the Word2vec model tried to show better performance by identifying the relationship between the document and the LDA subject and the relationship between the Word2vec document. In addition, as a clustering method through PCA dimension reduction, a method for intuitively classifying documents by using the t-SNE technique to classify documents with similar themes and forming groups into a structured organization of documents was presented. In a situation where the efforts of many researchers to overcome COVID-19 cannot keep up with the rapid publication of academic papers related to COVID-19, it will reduce the precious time and effort of healthcare professionals and policy makers, and rapidly gain new insights. We hope to help you get It is also expected to be used as basic data for researchers to explore new research directions.

  • A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

    • Ku, Min Jung;Ahn, Hyunchul
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.2
      • /
      • pp.85-109
      • /
      • 2018
    • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

    Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

    • Lim, Myungsu;Kim, Namgyu
      • Journal of Intelligence and Information Systems
      • /
      • v.20 no.4
      • /
      • pp.25-41
      • /
      • 2014
    • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

    The differences of dietary behaviors, dietary life consumer education related current situations·competencies and dietary lifestyles between baby-boom and echo generations (베이비붐세대와 에코세대의 식행동, 식생활관련 소비자교육 현황·역량, 식생활 라이프스타일 차이)

    • Park, Jong Ok
      • Journal of Nutrition and Health
      • /
      • v.51 no.2
      • /
      • pp.153-167
      • /
      • 2018
    • Purpose: This study was conducted to identify differences in dietary behaviors, dietary life consumer education related situation competencies, and dietary lifestyles between baby-boom and echo generations by gender. Methods: Data were drawn from the 2016 Food Consumption Behavior Survey, and 2,474 subjects (baby-boom generation 1,304; echo generation 1,170) were selected. Results: The baby-boom generation more frequently ate meals at home with family than the echo generation, whereas the echo generation had meals more frequently at cafeterias, cafes, bakeries, convenience stores and with friends or colleagues than the baby-boom generation. However, no significant differences in dietary life related consumer education were observed between generations, and experience with food related consumer education and food related promotional/events was very low in general. Baby-boomers received their primary dietary information from surrounding people, whereas the echo generation received it from broadcasting. The information use competence was lower for the baby-boom generation (3.29) than echo generation (3.35), although this difference was not significant. Healthy dietary life competence did not differ significantly, whereas the baby-boom generation showed a higher level of practice competence than the echo generation. Additionally, the baby-boom generation was more likely to pursuit health and less likely to be concerned with convenience and taste quality than the echo generation. Conclusion: The frequencies of meal eating places, drinking, and eating-out differed significantly between the two generations, while the participation ratios of food related consumer education/events, attitudes toward education, and information use competence did not. Additionally, knowledge regarding healthy dietary life competencies did not differ, whereas practice level showed significant differences between generations. Among dietary lifestyles, the baby-boom generation showed higher pursuit of health and lower pursuit of convenience and taste quality than the echo generation.

    An analysis of the Domestic Interior Materials as the Ecological Design Aspects (친환경측면에서 본 국내 실내건축자재의 현황 조사 및 분석)

    • Chun Jin-Hie;Kim Jung-Ah
      • Archives of design research
      • /
      • v.19 no.4 s.66
      • /
      • pp.133-144
      • /
      • 2006
    • According to the latest report by the Customer Protection Board, those who moved into newly constructed buildings are complaining about unidentified pains, asking for more careful selection of constructive materials for prevention of such potential problems. It is internationally recognized today that ecological materials can serve a significant factor for users' health, environmental protection and better industrial competitiveness. This study examined eco-design aspects of each interior material through web site search, in order to help customers learn about and capitalize on eco materials in a proper manner. As a result, 1. It turned out that the domestic industry are giving an impetus to releasing new eco items focusing on lower VOCs emission or addition of functional components as part of the marketing strategy. However, it is recommended that company understand significance of life cycle, and produce eco-concept materials. 2. The reliable standard for choosing the domestic material is EL, HB, GR marks. It is desirable to enhance recycling technologies and expand the sustainable consumption. customer class, since many recycled items are not developed. 3. The sourcing is a vulnerable part in terms of the concept of being environment-friendly material. Therefore, many manufacturers should design the easy knock-down products and produce the good items using recycled materials instead of new raw materials. Also solutions for making the energy from burning material should be studied. 4. The guidebook or manual with correct information about eco-materials is required to promote production and consumption with sustainable concept. 5. Many manufacturers are emphasizing ecological materials for customers, but some of them intended to disrupt customers' proper selection by promoting even unverified items to be environment-friendly.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.