• Title/Summary/Keyword: 정밀 이동거리 측정

Search Result 57, Processing Time 0.023 seconds

Focal Length Measurement System for Camera Lens using the MTF (MTF 방법에 의한 카메라 렌즈 초점 자동 측정 시스템 개발)

  • 이석원;이동성;박희재;문호균;김영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.264-270
    • /
    • 1996
  • In this paper, a computer automated system has been developed for measuring the focal length of camera lens using the MTF(Modurar Transfer Function) based on the signal processing around a line CCD and autocollimator. An optical Path for the focal length measurement system has been designed around thelight sourec, collimator, camera, mirror and the line CCD. The eyepiece of the collimator is replaced byline CCD, and the mirror is moved along the focal axis by a PC driven step motor. An efficient method has been designed for finding the optimum MTF value for the focal length based on the least squares approach. The developed system is fullycomputer automated: signal transmission to and from the camera, MTF evaluation based on the line CCD, step motor contorl, etc. The developed system has been applied to a practical camera manufacturing process and demonstrated its performance

  • PDF

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Implementation and Performance Evaluation of a Precision Localizing Device for Hyperloop Pods Driving at Ulta-High Speeds (초고속주행 하이퍼루프 포드의 정밀 위치측정 장치 구현 및 성능평가)

  • Ok, Min-Hwan;Choi, Su-Yong;Choe, Jae-Heon;Lee, Kwan-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.443-451
    • /
    • 2020
  • A futuristic locomotion system called Hyperloop is projected for driving at ulta-high speed, levitated in the tube. In hyperloop localization of pods on the linear synchronous motor is essential for pod driving. precision localization is required for acceleration and deceleration of pods driving at speed above 1,000km/h, and also required for adjusting the pod speed driving at this very-high speed to maintain inter-vehicle distance. In this work, a new scale of localization is challenged by modified laser surface velocimeter. In acceleration the speed of a virtual pod is calculated along its displacement measured by laser reflection. Under the requirement of precise localization of the pod driving at ultra-high speed, a displacement measurement device, which detects the difference in reflections from tiles passing by the pod, is developed and evaluated through performance test. Tests of pod speeds below 500km/h have showed exact localization results of the precision in centimeters, and tests of pod speeds above 500km/h have showed localization with very low error rates under 0.1%. For the measurement above 500km/h, future works would pursue the error rate converges to zero.

A Novel Vehicle Counting Method using Accumulated Movement Analysis (누적 이동량 분석을 통한 영상 기반 차량 통행량 측정 방법)

  • Lim, Seokjae;Jung, Hyeonseok;Kim, Wonjun;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • With the rapid increase of vehicles, various traffic problems, e.g., car crashes, traffic congestions, etc, frequently occur in the road environment of the urban area. To overcome such traffic problems, intelligent transportation systems have been developed with a traffic flow analysis. The traffic flow, which can be estimated by the vehicle counting scheme, plays an important role to manage and control the urban traffic. In this paper, we propose a novel vehicle counting method based on predicted centers of each lane. Specifically, the centers of each lane are detected by using the accumulated movement of vehicles and its filtered responses. The number of vehicles, which pass through extracted centers, is counted by checking the closest trajectories of the corresponding vehicles. Various experimental results on road CCTV videos demonstrate that the proposed method is effective for vehicle counting.

Development of an International Time Comparison System via GMS (정지기상위성을 이용한 국제시각비교시스템의 개발)

  • 이창복;이동두;정낙삼;장익수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1238-1246
    • /
    • 1992
  • We developed a time comparison system using the ranging signal of the geostationary meteorological satellite(GMS). By using the system time comparison between the KRISS(Korea Research Institute of Standards and Science) cesium atomic clock and the GMS ranging signal has been carried out and the results have shown that the precision of time comparison at KRISS is about 10 ns. For the more accurate measurements we calibrated the receiver delay time between KRISS receiver and CRL(Communications Research Laboratory) receiver by using the portable GMS receiver.

  • PDF

Development of a Vision Based Machine Tool Presetter (영상 기반 머신툴 프리세터 개발)

  • Jung, Ha-Hyoung;Kim, Tae-Tean;Park, Jin-Ha;Lyou, Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2014
  • Generally, the tool presetter is utilized to align and measure some specific dimensions of a machine tool. It is classified into two types(contact and contactless) according to the measurement method, and the optical sensor based contactless scheme has the advantages of measurement flexibility and convenience. This paper describes the design and realization of an industrial tool presetter using machine vision and linear scaler. Before measurement, the objective tool is attached to the mechanical mount and is aligned with the optical apparatus. After capturing tool images, the suggested image processing algorithm calculates its dimesions accurately, combining the traversing distance from the linear scaler. Experimental results conforms that the present tool presetter system has the precision within ${\pm}20um$ error.

Radius-Measuring Algorithm for Small Tubes Based on Machine Vision using Fuzzy Searching Method (퍼지탐색을 이용한 머신비전 기반의 소형 튜브 내경측정 알고리즘)

  • Naranbaatar, Erdenesuren;Lee, Sang-Jin;Kim, Hyoung-Seok;Bae, Yong-Hwan;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1429-1436
    • /
    • 2011
  • In this paper, a new tube-radius-measuring algorithm has been proposed for effectively measuring the radii of small tubes under severe noise conditions that can also perform well when metal scraps that make it difficult to measure the radius correctly are inside the tube hole. In the algorithm, we adopt a fuzzy searching method that searches for the center of the inner circle by using fuzzy parameters for distance and orientation from the initial search point. The proposed algorithm has been implemented and tested on both synthetic and real-world tube images, and the performance is compared to existing circle-detection algorithms, such as the Hough transform and RANSAC methods, to prove the accuracy and effectiveness of the algorithm. From this comparison, it is concluded that the proposed algorithm has excellent performance in terms of measurement accuracy and computation time.

Application in Anchovy Boat Seine of Ship′s Distance Measuring System by the GPS Receiver (GPS 선간거리계측 시스템의 권현망 조업에의 응용)

  • 김광홍;신형일;장충식;안영수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.287-298
    • /
    • 2000
  • The charge of distance and the change of tack between paired boats were measured by ship's distance measuring system fixed MCS in the main boat and MS in the following boat. The operating depth of the anchovy boat seine was recorded and analysed by self memory temperature/depth sensor in order to compare the relationship between the distance between towing boats and geometry of the anchovy boat seine net. The results are as follow, (1) When distance between paired boat was 5m, the fishing net was spreaded down deeply and unstably in accordance with bag net and flapper may be help to pass out anchovy school. (2) When distance between paired boat was 100m, vertical opening of the net was gradually increased with higher slope of towing depth in the square, bosom and flapper. Therefore, fishing efficiency could be decreased by preventing the entering of anchovy due to unstable shape of the bag net. (3) When distance between paired boat was 200m, the geometry of the anchovy seine was stable condition with the end of bag net was up while flapper was down and it may cause bad effect in fishing efficiency. (4) When distance between paired boat was 300m, the shape from wing net to bag net was gradually slow down and stable enough as well as good shape in bag net and flapper. (5) The ship's distance measuring system could be used for measurement and accurate control of distance between paired boat in accordance of anchovy recordings by fish finder in order to get higher fishing efficiency in anchory boat seine operation.

  • PDF

Ship′s Distance Measuring System by the GPS Receiver in Anchoring Watch (GPS 선간거리계측 시스템에 의한 묘박상황의 감시)

  • 김광홍;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.257-266
    • /
    • 2001
  • It was set up MCS and MS of ship's distance measuring system in land and ship respectively and ship's track including dropped and hove up anchor was tracked by mean of measurement for ship's position, relative bearing and distance from MCS to MS. Results analyzed for possibility of real time anchoring watch and effectiveness of measuring position are as follow; (1) The elapsed time from dropped anchor to hove up anchor is 4 minutes and the elapsed time to start recording ship's track after set up anchoring state is 10 minutes approximately. (2) Shape of hull's swing during anchoring is mostly 8 figue-like or rarely peanut-like shape. (3) Mean anchoring position during whole measuring time was shifted 49m north and 89m eastly. (4) Ship's track were moved counter-clockwise for $8.1^\circ$ range from relative bearing $186.1^\circ$ to $194.2^\circ$ ellipse-like tracks with the major axis 63m and the minor axis 53m. (5) High frequency of ship's position distribution was shown at relative bearing $187^\circ$ and distance 558m while low frequency was shown at relative bearing $194^\circ$ and distance 556m. (6) The designed ship's distance measuring system by PRTK-GPS was fit very well for anchoring watch as secured necessary area demanded for dragging anchor as well as anchoring by means of real time measurement both in distance and bearing.

  • PDF

An Efficient Interferometric Radar Altimeter (IRA) Signal Processing to Extract Precise Three-dimensional Ground Coordinates (정밀 3차원 지상좌표 추출을 위한 IRA의 효율적인 신호처리 기법)

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.507-520
    • /
    • 2011
  • Conventional radar altimeter system measured directly the distance between the satellite and the ocean surface and frequently used by aircraft for approach and landing. The radar altimeter is good at flat surface like sea whereas it is difficult to determine precise three dimensional ground coordinates because the ground surface, unlike ocean, is very indented. To overcome this drawback of the radar altimeter, we have developed and validated the interferometric radar altimeter signal processing which is combined with new synthetic aperture and interferometric signal processing algorithm to extract precise three-dimensional ground coordinates. The proposed algorithm can accurately measure the three dimensional ground coordinates using three antennas. In a set of 70 simulations, the averages of errors in x, y and z directions were approximately -0.40 m, -0.02 m and 4.22 m, respectively and the RMSEs were about 3.40 m, 0.30 m and 6.20 m, respectively. The overall results represent that the proposed algorithm is effective for accurate three dimensional ground positioning.