• Title/Summary/Keyword: 정면 밀링

Search Result 60, Processing Time 0.019 seconds

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

Improvement of the Surface Roughness by Changing Chamfered Angle of the Insert in Face Milling (정면밀링가공에서 인서트의 챔퍼각 변화에 의한 표면거칠기 향상)

  • Kwon, Won-Tae;Lee, Seong-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.155-160
    • /
    • 2001
  • A milling process with 45 degree chamfered inserts produces a perfect flat surface only in theory. It is due to many unwanted factors including thermal effect, dynamic effect, the problem of the controller used and the problem of accuracy of the machine tool. In this study, introduced is a method to improve the surface roughness by redesigning of the chamfer angle of the insert, which traditionally has been 45 degree. First, the relationship between the fixed machine coordinate and the relative coordinate on the insert is derived. This transfer matrix is used to determine the new insert angle to maximize the flatness of the machined surface. A newly designed insert is manufactured, and used to carry out the experiment. It is proved that she insert designed by the proposed method produced a much flatter surface than a traditional one.

  • PDF

Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling (정면밀링에서 공구경사각에 따른 비절삭저항 변화)

  • 류시형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Development of mechanistic model for cutting force prediction considering cutting tool states in face milling (정면밀링공정에서 공구상태 변화를 고려한 절삭력예측 모델의 개발)

  • Lee, S.S.;Kim, H.S.;Lee, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.63-73
    • /
    • 1995
  • A mechanistic force system model considering the flank wear for the face milling process has been developed. The model predicts variation of the cutting forces according to flank wear in face milling over a range of cutting conditions, cutter geometries and cutting process geometries including relative positions of cutter to workpiece and rounouts. Flycutting and multitoth cutting teste were conducted on SS41 mild steel with sintered carbide tool. In order to verify the mechanistic force model considering the flank wear of cutting tools, a series of experiments was performed with single and multitooth cutters in various cutting conditions. The results show good agreement between the predicted and measured cutting force profiles and magnitudes in time and frequency domains.

  • PDF

An Experimental Study onthe Detection of Tool Failure I Face Milling Processes (정면밀링가공시 공구 파손 검출에 관한 실험적 연구)

  • 김우순
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.73-79
    • /
    • 1996
  • In this paper present a new technique (strain-telemetering)for detection of coated tool failure in face milling processes. In the cutter body the strain signals received fro the transmitter is transformed in to frequency modulation(FM) signals in face milling processes. A receiver which is place near by the Vertical milling machine receives the FM signals, then the signals will be sent to a computer which determines whether th tool is failure. And machined surface of workpiece is detected by the SEM. In this paper, A on-line monitoring of the tool failure detection system based on the strain -telemetering apparatus has bee represented.

  • PDF

A Study about Dynamic Behavior of the Face Milling Cutter to Minimize Resultant Cutting Force (최소 절삭력형 정면밀링 커터의 동적거동에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • On face milling operation a newly optimal tool, which can minimize the resultant cutting forces resulted from the cutting force model, was designed and manufactrued. Cutting experiments using the new and conventional tools were carried out and the cutting forces resulted from those tools were analyzed in time and frequency domains. The performance of the optimized cutter was tested through the dynamic cutting forces resulted form the newly designed tool are much reduced in comparision with those from the conventional tool. By reducing the dynamic cutting force fluctuations, machine tool vibrations can be reduced, and stable cutting operation can be carried out.

  • PDF

A Study on Fault Diagnosis in Face-Milling using Artificial Neural Network (인공신경망을 이용한 정면밀링에서 이상진단에 관한 연구)

  • Kim, Won-Il;Lee, Yun-Kyung;Wang, Dyuk-Hyun;Kang, Jae-Kwan;Kim, Byung-Chang;Lee, Kwan-Cheol;Jung, In-Ryung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.57-62
    • /
    • 2005
  • Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.

  • PDF

A Study on the Analysis of Tool-wear Patterns and Mechanisms in Face Milling (정면밀링에서 공구마멸 패턴과 메커니즘 분석에 관한 연구)

  • Jang, Sung-Min;Baek, Seung-Yub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2017
  • This paper provides an experimental analysis on the breakage of the coated tool using the face-milling cutter of the machining center due to changes in the cutting speed and the feed rate. The experimental studies were conducted using STS 304 materials and the damage to the tool was analyzed according to the change in machining time. The experiments confirmed that the cutting speed and feed rate affected the tool damage and the mechanical impact and thermal shock were determined to severely damage the tool. From the production engineering point of view, it has been experimentally investigated that the increased feed rate significantly influences the material removal rate more than the increased cutting speed.

STS 316L과 316LN 재의 정면밀링가공에서 가공 변질층에 관한 연구

  • Oh, Sun-Se;Lee, Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.262-262
    • /
    • 2004
  • 오오스테나이트 스테인리스강은 강도, 연성, 인성, 내식성 등이 우수하여 광범위하게 사용되고 있지만 절삭 시 전단저항이 크므로 절삭날 결손이나 용융을 유발하여 가공면을 안정시키기 어려우며 난삭재로서 가공경화가 매우 큰 재료이다. 그리고 질소를 약 0.1wt.% 첨가한 316LN강은 316L강에 비해 고온강도 특성이 우수하여 주목받고 있는 새로운 재료이이지만, 저탄소의 강도 약점을 보완하기 위하여 고용강화원소로 질소를 첨가하기 때문에 높은 강도로 인하여 절삭가공에 난점이 있으므로 이 재료를 응용하기 위해서는 절삭 시 재료 표층부에 발생하는 가공 변질층에 관한 연구가 필요하다.(중략)

  • PDF

Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling (정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측)

  • Kim, Kug-Weon;Joo, Jung-Hoon;Lee, Woo-Young;Choi, Sung-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.