• Title/Summary/Keyword: 정면밀링

Search Result 60, Processing Time 0.024 seconds

A Study on Optimal Design of Face Milling Cutter Geometry(I) -With Respect to Cutting Force- (정면밀링커터의 최적설계에 대한 연구(1) -절삭력 중심으로-)

  • 김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2211-2224
    • /
    • 1994
  • On face milling operation a new optimal cutter, which can minimize the resultant cutting forces, was designed from the cutting force model. Cutting experiments were carried out and the cutting forces of the new and conventional cutters were analyed in time and frequency domains. The resultant cutting forces were used as the objective function and cutter angles as the variables. A new optimal cutter design model which can minimize the resultant cutting forces under the constraints of variables was developed and its usefulness was proven. The cutting forces in feed direction of the newly designed cutter are reduced in comparison with those from the conventional cutter. The magnitudes of an insert frequency component of cutting force from the newly designed cutter are reduced than those from conventional cutter and the fluctuations of cutting force are also reduced.

정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발

  • 이병철;황정철;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.28-33
    • /
    • 1992
  • The paper describes a new mean specific cutting pressure model in order to improve the accuracy of prediction of cutting force for face milling. The new mean specific cutting pressure model produces a mean specific cutting pressure and coefficients applied to existing cutting model not by traditional method but by considering intermittence and variation of chip width according to insert cutting position to take into cutter geometry machining condition and width of workpiece, and considering a mean measure force according to spindle eccentricity and mean measure force according to spindle eccentricity and insert initial position errors.. The simulated forces in X, Y, Z directions resulted from the simulated cutting model and the new cutting model are compared with measured forces in the time end frequency domains. The simulated forces in the time and frequency domains. The simulated forces resulted from the new cutting model have a good degreement with measured forces in comparison with these resulted from the existing cutting model

Tool Wear in High Speed Face Milling Using CBN Tool (CBN 공구를 이용한 고속 정면밀링시의 공구마멸)

  • 최종순
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.332-338
    • /
    • 2000
  • The high speed machining is now one of the most effective manufacturing methods to achive higher productivity. However, due to the increased cutting temperatures caused by increased cutting speed, tool wear become larger. Especially in high speed face milling, cutting tools are exposed not only to high cutting temperatures, but also to mechanical and thermal shock stresses. It is essential, therefore, to know the wear characteristics of tool materials in high speed machining. This study presents an experimental investigation of the cutting performance of CBN tools in high speed face milling of gray cast iron FC25. The effect of cutting conditions and cutting length on flank wear of CBN tools and roughness of machined surfaces is investigated. The cutting parameters involved were ; cutting speeds in the range of 600to 1800 m/min, feed of 0.1 mm/tooth, and depth of cut of 0.3mm.

  • PDF

A Study on Real Time Monitoring of Tool Breakage in Milling Operation Using a DSP (DSP를 이용한 정면 밀링공구의 실시간 파단 감시방법에 관한 연구)

  • Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.168-176
    • /
    • 1996
  • A diagnosis system which can monitor tool breakage and chipping in real time was developed using a DSP(Digital Signal Processor) board in face milling operation. AR modelling and band energy method were used to extract the feature of tool states from cutting force signals. Artificial neural network embedded on DSP board discriminates different patterns from features got after signal processing. The features extracted from AR modelling are more accurate for the malfunction of a process than those from band energy method, even though the computing speed of the former is slow. From the processed features, we can construct the real time diagnosis system which monitors malfunction by using a DSP board having a parallel processing capability.

  • PDF

A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling (금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구)

  • 조성실;임근영;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

A Study of the on-Line Surface Roughness Monitoring using the Cutting Force in Face Milling Operation (정면밀링작업에서 절삭력을 이용한 On-Line 표면조도 감시에 관한 연구)

  • Baek, Dae Kyun;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.185-193
    • /
    • 1997
  • This paper presents the on-line monitoring of the surface roughness in a face milling operation. The cut- ting force was used to monitor the surface roughness, since the insert run-outs not only deteriorate surface roughness but also change cutting force. AR model and band energy method were taken to extract the fea- tures from the cutting force. The features extracted from AR modelling are more accurate about the moni- toring than those from band energy method, whereas, the computing speed of the former is slow. An artifi- cal neural network discriminated the level of the surface roughness by using the features extracted via signal processing.

  • PDF

A Study on the Mechanical Properties and Deformed Layer of STS 316L and 316LN Stainless Steels (STS 316L과 316LN 강의 고온 기계적 특성 및 가공 변질층에 관한 연구)

  • Oh, Sun-Se;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2004
  • The deformed layers generated in face milling works were comparatively investigated to type 316L and nitrogen(N)-added type 316LN stainless steels. In order to characterize mechanical properties between type 316L and type 316LN, high-temperature tensile tests were conducted with different temperatures: R.T to $700^{\circ}C$. The cutting forces of three components, Fx, Fy and Fz were measured using a tool dynamometer through the face milling cutting tests. The deformed layers were measured by micro-hardness tests along deformed layers. The results of mechanical properties showed that type 316LN was superior to type 316L. The deformed layers of two steels were generated in the 1501m-3001m ranges, and type 316L was higher than type 316LN. The reason for this is due to the high strength properties by nitrogen effect. It was found that deformed structures were well observed for type 316L, but were minutely observed for type 316LN in this cutting conditions.

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF

In-process Immersion Ratio Estimation Using Spindle Motor Current during Face Milling (정면밀링공정중 추축모터전류를 이용한 절입비의 실시간 추정)

  • 조규진;오영탁;권원태;주종남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 2000
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ratio using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to the cutting torque acting on a single tooth at the swept angle of cut and can be acquired from cutting torque signals. Average cutting torque per revolution can also be calculated from cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current. Varying immersion ratio is also estimated well using the presented algorithm.

  • PDF

Cutting Characteristics and Deformed Layer of Type 316LN Stainless Steel (Type 316LN 스테인리스강의 절삭특성과 가공 변질층)

  • Oh, Sun-Sae;Yi, Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.196-205
    • /
    • 2004
  • The cutting characteristics and the deformed layer of nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150$\mu\textrm{m}$-300$\mu\textrm{m}$ ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem.