• Title/Summary/Keyword: 정량적 위험도 해석

Search Result 132, Processing Time 0.026 seconds

- Analysis of Likelihood of Failure for the External Corrosion of Carbon and Low Alloy Steels through the Quantitative Risk Based Inspection using API-581 - (API-581에 의한 정량적 위험기반검사에서 탄소강 및 저합금강의 외부부식에 치한 사고발생 가능성 해석)

  • Lee Hern Chang;Kim Hwan Joo;Jang Seo Il;Kim Tae Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.239-248
    • /
    • 2004
  • Likelihood of failure for the external corrosion of carbon and low alloy steels, which affect to a risk of facilities, was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that the technical module subfactor (TMSF) decreased as the inspection number increased and it increased as the Inspection effectiveness and the used year increased. In this condition, the TMSF showed high value for the case of the marine/cooling tower drift area as a corrosion driver, poor quality of coating, no insulation, and low insulation condition.

Analysis of Likelihood of Failure for the Stress Corrosion Cracking by Caustic Cracking through the Quantitative Risk Based-Inspection using API-581 BRD (API-581 절차에 의한 정량적 위험기반검사에서 부식성 균열에 의한 응력부식의 사고발생 가능성 해석)

  • Lee, Hern-Chang;Choi, Sung-Kyu;Cho, Ji-Hoon;Ham, Byung-Ho;Kim, Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 2007
  • The likelihood of failure for the stress corrosion cracking (SCC) of caustic cracking, which affect to a risk of facilities, was analyzed through the risk based-inspection using API-581 BRD. We found that SCC of the caustic cracking was occurred above 5 % NaOH concentration, and the technical module subfactor (TMSF) was maximized for above 50 % concentration. The heat traced and monitoring were not sensitive to the TMSF with NaOH concentration and temperature. But the steam out was more of less affect minimum value of the TMSF. Also, the inspection number, the inspection effectiveness, and the year since inspection were very sensitive to the TMSF with NaOH concentration and temperature. Therefore, the plan of next inspection will be established with compositively considering those at once.

Stability Analysis of Embankment Overtopping by Initial Fluctuating Water Level (초기 변동수위를 고려한 제방 월류에 따른 안정성 분석)

  • Kim, Jin-Young;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.51-62
    • /
    • 2015
  • It is not possible to provide resonable evidence for embankment (or dam) overtopping in geotechnical engineering, and conventional analysis by hydrologic design has not provided the evidence for the overflow. However, hydrologic design analysis using Copula function demonstrates the possibility that dam overflow occurs when estimating rainfall probability with rainfall data for 40 years based on fluctuating water level of a dam. Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship needs to be established to quantify various uncertainties associated with modeling process and inputs. The systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, the initial level of a dam for stability of a dam is generally determined by normal pool level or limiting the level of the flood, but overflow of probability and instability of a dam depend on the sensitivity analysis of the initial level of a dam. In order to estimate the initial level, Copula function and HEC-5 rainfall-runoff model are used to estimate posterior distributions of the model parameters. For geotechnical engineering, slope stability analysis was performed to investigate the difference between rapid drawdown and overtopping of a dam. As a result, the slope instability in overtopping of a dam was more dangerous than that of rapid drawdown condition.

Sewer overflow simulation evaluation of urban runoff model according to detailed terrain scale (상세지형스케일에 따른 도시유출모형의 관거월류 모의성능평가)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.519-528
    • /
    • 2016
  • Frequently torrential rain is occurred by climate change and urbanization. Urban is formed with road, residential and underground area. Without detailed topographic flooded analysis consideration can take a result which are wrong flooded depth and flooded area. Especially, flood analysis error of population and assets in dense downtown is causing a big problem for establishments and disaster response of flood measures. It can lead to casualties and property damage. Urban flood analysis is divided into sewer flow analysis and surface inundation analysis. Accuracy is very important point of these analysis. In this study, to confirm the effects of the elevation data precision in the process of flooded analysis were studied using 10m DEM, LiDAR data and 1:1,000 digital map. Study area is Dorim-stream basin in the Darim drainage basin, Sinrim 3 drainage basin, Sinrim 4 drainage basin. Flooding simulation through 2010's heavy rain by using XP-SWMM. Result, from 10m DEM, shows wrong flood depth which is more than 1m. In particular, some of the overflow manhole is not seen occurrence. Accordingly, detailed surface data is very important factor and it should be very careful when using the 10m DEM.

A Study on Facility Criteria of Small Petrol Stations based on Quantitative Risk Assessment (정량적 위험성 평가에 기반한 간이 주유취급소 시설기준에 대한 연구)

  • Park, Wooin;Ku, Jae-Hyun;Song, Yong-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Small petrol stations have great potential for a wide distribution in metropolitan area in which the land value possesses primary installation cost of the facility. The objective of the present study is to propose appropriate facility regulations of small petrol stations in Korea that can be popularly installed in the future in terms of securing safety in addition to serviceability. The hazard analysis and damage prediction from the possible fire and explosion accidents were performed using a software, PHAST v.6.5. As essential components of the facility regulations proposed in this study, the regulations about the refueling lot, maximum capacity of underground tank, location of fixed refueling facilities, height of firewall for small petrol stations were subsequently compared with those for regular-sized petrol stations.

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

Analysis of Subsidence Mechanism and Development of Evaluation Program (지반침하 메커니즘 분석 및 평가 프로그램 개발)

  • Choi Sung O.;Jeon Yang-Soo;Park Eu-Sup;Jung Yong-Bok;Chun Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.195-212
    • /
    • 2005
  • Surface subsidence which occurs with several reasons, such as collapse of gangway, discharge of groundwater, compaction of weak rock mass, and tunnel excavation in shallow depth, gives rise to a serious problem in national infra-structures. In this study, therefore, the mechanism of subsidence has been examined numerically to overcome the passive approach on subsidence occurrence area. With many kinds of numerical studies, the major geotechnical parameters have been selected and the weighted values have been defined for each parameters. Also the authors developed the numerical program which can estimate the possibility of subsidence occurrence, and proposed the decision method for objective and quantitative guideline. It is anticipated that this research will be helpful to establish the hazard map on subsidence region.

Development of technology to evaluate for precision spatiotemporal hydrological analysis(streamflow and available water resources) during drought in small and medium-sized river basins (중소하천 가뭄시 정밀 시공간 수문량(하천유출량 및 수자원가용량) 평가 기술 개발)

  • Jang, Cheol Hee;Kim, Hyeon Jun;Kim, Deok Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.124-124
    • /
    • 2022
  • 가뭄시 유역 수문량은 하천수/지하수 취·배수, 하·폐수방류량, 용수재이용 등 복잡한 물이용체계에 따른 영향이 크지만 기존 가뭄시 수문량 평가는 이러한 복잡한 물이용체계를 고려하지 않아 정도 높은 예측에 어려움이 있다. 따라서 가뭄시 유력 내 상세물이용체계 및 수문환경특성 인자들의 상호작용 규명을 통한 정도 높은 수문량 평가 기술의 개발이 시급하다. 대하천 주변 광역상수도 공급지역은 가뭄 발생시에도 안정적으로 물이용이 가능하나, 중소하천을 수원으로 하는 하천의 상류지역은 가뭄시 물공급 안정성이 취약하다. 따라서 중소하천을 대상으로 가뭄시 물 공급시설의 효율적 운영, 물부족 위험도 평가, 가용수자원의 최적이용 등 종합적인 대책 마련을 위해서는 신뢰성 높은 수문량(하천유출량 및 수자원가용량) 예측이 필요하다. 가뭄에 따른 중소하천유역의 수문학적 유출거동을 평가하기 위한 해석 모형으로는 국내의 복잡한 유역 수문환경특성을 평가하기 위해 개발된CAT (Catchment hydrologic cycle Assessment Tool)(김현준 등, 2012)을 이용하였다. CAT은 기후변화나 토지이용변화에 따른 유역의 수문환경특성 변동성을 정량적으로 평가하기 위해 개발된 모형이다. CAT은 인위적인 물이용체계 즉, 광역급수, 용수재이용, 지하수 취수, 하천수 취·배수 등을 분석하기 위한 툴을 제공하므로 가뭄시 상세물이용체계에 따른 시·공간적 수문환경특성 분석 및 수문량 평가를 위한 최적의 모형으로 선정하였다. 본 연구에서는 중소하천유역의 수문량 예측기술 실용화 기반을 마련하기 위하여 낙동강, 금강, 영산/섬진강 중권역을 대상으로 정밀 시공간 수문량을 평가하였다. 각 권역별 보정지점을 기준으로 관측유량 자료와 모의자료의 1:1비교를 통해 수문량 예측정확도를 산정하였으며, 모형효율(Nash Sutcliffe Efficiency, NSE) 및 결정계수(Coefficient of Determination, R2)의 권역별 평균은 NSE 72%, R2 79%로 나타났으며, 대부분의 지점에서 70% 이상을 나타내어 환경부 및 지자체의 가뭄시 물관리 정책을 지원하기 위한 실용화 기반을 마련하였다.

  • PDF

Typhoon-surge Characteristics in Relation with the Tide-surge Interaction (조석-해일 비선형성과 관련된 태풍-해일 특성)

  • Kang, Ju Whan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • Tide-surge interaction during typhoon periods has been analyzed. The quantitative analysis of the Chi-square test shows that the interaction is most prominent at the Southwestern coast whereas the Western and the Southeastern regions are not. Patterns of surge type were divided into two groups, that is, steep type and mild type. Then, the interaction was turned out to be more prominent for mild type data. The weak interaction at the Western region is considered due to negative surges when the south-track typhoons attack. However, the interaction is remarkable when the west-track typhoons attack. The weak interaction at the Southeastern coast is, on the other hand, considered due to abundance of the steep type typhoons. Thus, inundation risk would be so apprehensive at that region because large-scale surge might be caused even at high tide.

Study of the Characteristics of Smoke Spread by an Installing Smoke Barrier in Medium Length Road Tunnel (중규모 도로터널의 제연경계벽 설치에 따른 연기확산특성)

  • Baek, Doo-San;Lee, Seung-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.9-17
    • /
    • 2016
  • In the case of a medium length road tunnel, the installation of a smoke control facility is not mandatory so users can suffer considerable injuries if a fire breaks out. Therefore, this study analyzed the high-temperature air and toxic gas generated by fire proliferating with time when a smoke barrier is not installed and when the installation interval is 100, 150, 200, and 250 m through 3-dimensional numerical analysis, evacuation simulation, and Quantitative Risk Assessment Methodology targeting the medium length road tunnel. As a result, the diffusion of the high-temperature air and toxic gas occurring from the a fire was delayed when the smoke barrier was installed in a medium length road tunnel compared to that when it was not installed. In addition, when the installation interval of a smoke barrier was 100m and the numerical analysis target was 100m, the diffusion of high-temperature air and toxic gas generated by the fire was delayed more than in the other cases, which was most suitable for tunnel users to evacuate.