콘크리트 건조수축 균열을 제어하기 위하여 수축저감제(SRA)가 개발되었다. SRA는 콘크리트 미세공극의 표면장력을 작게 하여 수축량을 감소시키며, 콘크리트의 품질향상을 위하여 SRA의 사용이 증가되고 있다. 하지만 건조수축을 예측하기 위한 다양한 모델이 존재함에도 불구하고, SRA의 영향을 고려할 수 있는 예측방법이 아직까지 없는 실정이다. 따라서 SRA 콘크리트의 건조수축에 의해 발생하는 인장응력을 정확히 예측할 수 없고, 콘크리트 구조물의 정량적인 사용성 한계의 검토가 불가능하다. 본 연구에서는 SRA 콘크리트의 정량적인 건조수축 변형률 예측가능성을 제시하기 위하여, 건조수축실험값과 기존 모델에 의한 예측값을 비교하였다. 기존 모델에는 SRA의 영향을 고려할 수 없으므로, 실험결과에 근거하여 SRA 첨가율에 따른 수축저감계수를 도출하였고 기존 모델에 수축저감계수를 적용하여 예측값을 구하였다. 그 결과 AIJ 모델, ACI 모델, GL2000 모델은 ${\pm}10%$의 오차범위 내에서 예측값과 실측값이 전반적으로 양호한 상관관계를 보였지만, CEB-FIP 모델과 B3 모델은 예측값이 실측값을 과소평가 하는 것으로 나타났다.
최근 빈번히 발생하는 이상기후의 영향으로 홍수범람 가능성이 커짐에 따라 침수범위에 대한 예측은 점점 어려워지고 있다. 이러한 홍수에 대비하기 위한 비구조적 대책 중의 하나인 호우피해 예측지도의 작성은 필수적이며 홍수범람 해석에서 중요한 부분을 차지한다. 하지만, 호우피해 예측지도의 정량적 평가방법과 기준이 없는 실정이다. 본 연구에서는 Receiver Operation Characteristics (ROC) 분석과 Lee Sallee Shape Index (LSSI) 방법을 이용하여 10개 행정구역에 대한 호우피해 예측지도의 정확도를 평가하였다. 그 결과 ROC Curve Score는 0.631, LSSI 방법은 25.16 %로 분석되었으며, 각 행정구역에 대한 분석결과와 전체 결과를 활용하여 점수구간을 5개로 나누어 호우피해 예측지도 평가에 대한 정량적 평가방법을 제안하였다. 또한, 검 보정이 완료된 XP-SWMM 모형의 ROC 분석과 LSSI 결과, 각각 0.8496, 51.92 %로 분석되어 침수피해 예측지도에 대한 평가기준의 적정성을 확보하였다. 본 연구에서 제안한 호우피해 예측지도에 대한 정략적인 평가기준은 다양한 재해지도에 적용 가능할 것으로 판단된다.
이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.
기계학습을 통해 학습된 모델은 업무 활용 시 그 성능을 실측하기 매우 어렵다. 때문에 운영 부서에서는 모델의 성능을 효과적으로 관리하지 못한다. 이로 인해 모델의 상태를 판단하기 위한 Concept drift 탐지 방법이 다양하게 연구되고 있다. 운영 부서에서는 운영 중인 모델의 성능을 정량적으로 관리하려고 한다. 그러나 Concept drift는 모델 상태를 데이터 관계적으로 판단 할 뿐, 모델의 정량적 성능 수치를 추정하지는 못한다. 본 연구에서는 Concept drift의 통계량을 통해 정량적으로 precision 값을 추정하는 성능 예측 모델(PPM, Performance prediction model)을 제안한다. 제안 모델의 Algorithm 1에서는, 학습데이터에서 복원 추출한 샘플링 데이터에 인위적인 drift를 유도하고 이때의 precision을 측정하여 drift와 precision의 데이터 셋을 만들어 학습한다. Algorithm 2에서는 테스트 데이터를 통해 실제 precision과 예측 precision의 차이를 측정하여 성능 예측 모델의 오차를 보정 한다. 현실 비즈니스에서 사용될 수 있는 대출 심사 모델과 신용카드 오사용 탐지 모델에 PPM을 적용하여 성능 예측의 유효성을 확인했다.
기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.
기후변화로 인해 태풍과 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 피해 역시 증가하고 있다. 태풍과 집중호우로 인한 피해를 줄이기 위한 홍수 예 경보 시스템에는 단시간 강우예측모델과 레이더 자료를 이용하여 산정된 예측강우가 필요하다. 이를 위하여 외국의 경우 단시간 강우예측 모델을 개발하여 레이더 자료를 이용한 강우예측을 수행하고 이를 수문모형과 연계하여 그 적용성을 분석하거나 홍수예보의 활용성을 평가하는 연구를 활발히 진행하고 있다. 이에 본 연구에서는 홍수예보를 위한 단시간 예측강우의 활용 측면에서 기상레이더 정보와 결합된 이류모델을 활용한 초단시간 강우예보의 국내 적용성을 평가하고자 한다. 이를 위해 최소자승법(Least-square fitting) 기법으로 레이더 강우를 추정하고, 추정된 강우를 이류모델의 초기장으로 활용하였다. 또한, 레이더 예측강우와 지상관측강우의 비교를 통해 레이더 예측강우의 정확도를 정성적 정량적으로 평가하고, 도시홍수예보의 활용 측면을 고려하여 중랑천 유역을 대상으로 초단시간 예측강우의 유역평균강우량을 산정하여 평가하였다. 연구 결과, 관악산 레이더와 진도 레이더 대부분의 사례에서 선행시간의 증가에 따라 예측강수의 정확도가 감소하지만 정성적 평가 측면에서 예측강우는 0.6 이상의 높은 정확도를 나타내었으며, 정량적 측면에서 예측강우와 관측강우와의 상관계수는 평균적으로 선행시간 1시간 이내에서 대부분 0.5 이상의 비교적 좋은 상관성을 보였다. 예측 유역평균강우의 평가 결과 관측강우에 비해 과소추정하는 경향이 있으나 평균적으로 상관계수 0.5 이상으로 비교적 정확하게 강우를 예측하는 것을 확인할 수 있었다. 이를 통해 레이더 자료와 이류모델을 통해 산정한 초단시간 예측강우의 활용성을 확인할 수 있었다.
최근의 재해 발생은 하천에 의한 범람, 제방의 붕괴 등에 의한 피해발생보다는 일정지역에 국한적으로 내수배제 불량, 토사유출, 산사태 등으로 인한 피해의 발생이 증가하고 있다. 특히나 도시지역과 신규개발지역을 중심으로 집중호우로 인한 토사유출 등으로 인한 배수로 막힘, 산사태등의 2차적인 피해가 증가하고 있는 추세이다. 2011년의 서울의 우면산 산사태 등과 같은 도시중심에서의 피해와 강원도 등의 신규개발지역에서의 토사로 인해 2차, 3차 피해는 국지적이고 예측이 불가능한 곳에서 발생되고 있다. 이러한 토사유출, 산사태에 의한 예측기법은 최근의 정보기술의 발달로 인해 보다 다양한 방법의 접근들이 시도되고 있으며, 이에 대한 정량적인 평가기법들이 개발되고 적용되고 있다. 본 연구에서는 산지지형의 소규모 개발지의 토사재해의 위험성을 평가하기 위하여 GIS 기술을 이용한 사면의 안정성과 산사태 위험성을 평가하는 대표적인 방법으로 Pack et al. (1998)이 제안한 수리적 무한사면 안정모델과 결합하여 사면안정분석을 위해 개발된 SINMAP을 이용하여 소규모 개발지역의 토석류 해석과 사면의 안정성 검토 그리고 범용토양공식을 이용하여 토사유출량을 산정하여 개발지역내 사면 및 토사재해의 위험성을 평가하였다. GIS를 이용한 지형적 특성에 따른 사면의 위험성과 토사유출량 해석 결과를 이용하여 소규모 개발지역의 토사재해의 위험성을 정량적이고 다각적으로 평가하여 재해발생에 따른 위험성을 노출하고 이에 대한 대책 수립에 도움이 될 것으로 판단된다.
게맛살의 HACCP system에 있어서 critical control point중의 하나인 L. monocytogenes가 오염된 제품에서 균의 성장변화를 정량적으로 예측할 수 있는 수학적 모델의 개발을 위한 기초 자료를 제공하고자 게맛살 성분조성을 고려한 modified imitation crab(MIC) broth에서 온도와 초기균수에 따른 L. monocytogenes의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. 균의 증식 지표인 최대증식속도상수(k), 유도기(LT), 세대시간(GT)은 온도에 지배적인 영향을 받았으며, 초기균수에 따른 유의적인 차이는 없었다(p>0.05). 최대증식속도상수(k)와 온도 및 초기균수의 상관관계를 나타내는 수학적 정량평가모델인 polynomial model과 square root model을 이용하여 L. monocytogenes 성장을 정량적으로 예측할 수 있는 모델인 $polynomial\;mode(k=0.71{\cdot}exp(-0.5(\;((T-36.05)/11.84)^{2}+((A_{0}+8.12)/21.59)^{2})))$과 square root model($\sqrt{k}$ =0.02(T-(-3.42)) [1-exp(0.36(T-44.51))])을 개발하였으며 실험치와 예측치의 상관관계는 각각 0.92. 0.95로 polynomial model보다 square root model 예측치가 실험치와 상관관계가 더 높은 것으로 나타났다.
유역 유출 예측 시스템(Rainfall Runoff Forecasting System. RRFS)는 유역의 강우-유출 관계의 정성적 및 정량적 분석을 위한 도구로서 개발되었다. RRFS는 다음과 같이 가지 주요 모듈로 구성되어 있다: 1) 실시간 수문학적 입력자료 구축 모듈, 2) 예측된 기상학적 자료에 근거하여 단기간 용수 수요와 공급을 제공하기 위한 유출 모의와 예측 모듈, 3) 저수지 운영에 있어 장기간의 용수공급을 설정하기 위한 유출예측 모듈 그리고 4) 유출 모의와 예측의 결과에 대한 그래픽 처리 모듈 본 연구에서 개발된 RRFS의 보정과 검증은 금강유역에의 적용을 통해 수행되었으며, 적용된 결과 금강유역의 수자원 현황 파악 및 용수공급의 전망을 설정하는데 있어 매우 만족스러운 결과를 보여주었다. 따라서 유역의 수자원 이용 및 공급 계획의 수립에 필요한 다양한 유출 정보를 제공하는 효율적인 도구로서 이용될 수 있을 것으로 판단된다.
가스터빈 엔진의 높은 신뢰성과 운용비의 최소화는 제작자나 사용자 모두에게 중요한 문제이며, 정성적, 정량적 성능저하 예측을 포함한 다양한 성능진단기법이 시도되고 있다. 탈설계점에서의 성능진단은 설계점 성능진단에 비해 학습, 또는 처리해야 할 데이터 규모가 방대함에 따라 예측오차와 수렴도면에서 해결되어야 할 문제점들을 안고 있다. 따라서 이를 위해 본 연구에서는 가스경로해석 기법을 적용한 엔진성능진단코드를 개발하였으며, 이를 스마트 무인기용 터보축 엔진에 적용하여 설계점 및 고도 변화에 따른 탈설계점 영역에 대하여 단일 성능저하를 정량적으로 예측하여 GSP를 통한 예측결과와 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.