• 제목/요약/키워드: 정규화 입력 데이터

검색결과 92건 처리시간 0.029초

핵심어 검출을 위한 단일 끝점 DTW알고리즘 (A Single-End-Point DTW Algorithm for Keyword Spotting)

  • 최용선;오상훈;이수영
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.209-219
    • /
    • 2004
  • 본 논문에서는 핵심어 검출 시스템을 실시간 적용이 가능한 하드웨어로 구현하기 위해 연산량이 적고 구조가 간단한 단일 끝점 DTW 방법을 제안한다. 제안된 알고리즘은 일반적 DTW가 양쪽 끝점을 요구하는데 비하여 단지 한쪽 끝점만 필요하므로 이용하기에 편리하며, 국부 검색의 연속이 전역 경로를 이루게 되므로 매우 적은 연산량을 가진다. 그리고, 제안한 단일 끝점 DTW가 보다 나은 성능을 지니도록 하기 위해 새로운 경사 가중치와 거리 측정법을 가지도록 하였다. 이외에도, 단일 끝점 DTW는 특징벡터 정규화를 적용하여 특징벡터 각각의 차원에서 데이터들이 같은 표준편차를 가지게 하며 모든 프레임이 같은 에너지를 가지도록 정규화 되었다 또한, 주어진 학습 패턴들에 클러스터링을 적용한 후, 각 클러스터 내에서 평균을 계산하여 구한 패턴을 해당 핵심어를 대표하는 여러 개의 기준패턴으로 삼았다. 이러한 기준패턴들과 입력 음성의 특징벡터가 이미 정해진 문턱값 보다 작은 거리 내에 있을 때 핵심어는 검출된다. 제안된 알고리즘을 고립단어 음성인식과 핵심어 검출 실험에 적용하여 다른 방법을 이용한 결과보다 성능이 뛰어남을 확인하였다.

PCA 기반 LDA 혼합 알고리즘을 이용한 실시간 얼굴인식 시스템 구현 (The Embodiment of the Real-Time Face Recognition System Using PCA-based LDA Mixture Algorithm)

  • 장혜경;오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.45-50
    • /
    • 2004
  • 본 논문에서는 실시간 얼굴인식 시스템을 위한 새로운 PCA 기반 LDA 혼합 알고리즘을 제안한다. 크게 얼굴추출 부분과 얼굴인식 부분으로 구성되어 있으며, 얼굴추출 부분에는 차영상, color filtering, 눈과 입의 영역 검출 그리고 정규화 방법을 사용하였고, 얼굴인식 부분에는 추출된 얼굴 후보 영역 영상에 PCA와 LDA를 혼합하여 적용하였다. 기존의 PCA만을 사용한 인식시스템은 낮은 인식률을 보였으며, LDA만을 사용한 인식시스템에서는 학습데이터의 수에 비하여 영상의 화소 개수가 많은 경우 LDA를 입력 영상에 그대로 적용하기 곤란하였다. 이러한 단점을 극복하기 위하여, 정규화 된 영상에 PCA를 적용하여 차원을 축소한 후 LDA를 사용하여 실시간 인식을 가능하게 하였으며, 인식률 또한 향상시킬 수 있었다. 제안한 시스템의 성능을 평가하기 위하여 자체 제작한 DAUface의 데이터베이스를 가지고 실험을 하였다. 실험 결과, 제안된 방법이 PCA 방법과 LDA 방법, 그리고 ICA 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.

초음파와 소음 감지 센서를 이용한 학교 급식실 대기 시간과 연관 요소 분석 (Analysis of Waiting Time and its Associated Factors at School Lunch Room Using Ultrasonic and Noise Sensors)

  • 정지민;신예빈;이은지;김지은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.312-315
    • /
    • 2019
  • 본 연구는 아두이노 보드와 다중 센서들을 사용하여 학교 급식실 대기 공간에서의 대기 상황을 분석한다. 실험에 사용한 초음파 및 소음 감지 센서들로부터 초음파 및 소음 데이터를 입력 받아 송신하는 아두이노 보드 기반 프로그램을 작성하고, 데이터를 수집, 저장, 관리하기 위하여 CoolTerm 프로그램을 사용한다. 또한, C 언어를 기반으로 정규화 프로그램과 필터링 프로그램을 구현하여 대기 인원 감지라고 인정할 수 있는 조건(일정 소음 이상 발생, 초당 5회 이상 감지 및 3미터 미만 거리에서 감지)에 맞지 않는 데이터를 걸러낸다. 예비 실험 이후 실시한 본 실험 범위는 8월 27일(화)부터 30일(금)까지 4일간, 점심 식사 시간 중 중간 시간대인 12시 20분부터 12시 39분까지이다. 분석 결과 식단 선호도에 따라 대기 시간에 확연한 차이가 발생하는 것을 확인하였으며, 배식 시간 역시 대기 시간에 미치는 영향이 있는 것을 알 수 있었다. 또한 초음파 센서로부터 분석한 결과와 소음 감지 센서로부터 분석한 결과, 상당한 유사성이 관찰되었다. 본 연구는 대기 시간만의 측정에 그치는 것이 아니라, 식단과 대기 시간과의 관계 분석을 통해 학생 식사 행태가 대기 시간에도 영향을 미친다는 추가적인 사실을 증명하였는데, 이는 대기 시간 문제 해결이 단순히 급식 대기 상황 개선에만 있는 것이 아니라 식단 및 배식 방식 등의 개선과 같이 이루어져야 함을 보여준다. 이는 기존 연구들이 확인하지 못했던 사실로, 본 연구의 주요한 기여로 볼 수 있다. 향후 본 연구를 확대하여 무선 인터넷 및 알림 시설을 갖춘다면, 현재의 학교 급식 환경을 획기적으로 개선할 수 있을 것으로 기대한다.

천연가스 누출 예측을 위한 OrdinalEncoder 기반 DNN (OrdinalEncoder based DNN for Natural Gas Leak Prediction)

  • 홍고르출;이상무;김미혜
    • 한국융합학회논문지
    • /
    • 제10권10호
    • /
    • pp.7-13
    • /
    • 2019
  • 대부분의 천연가스(NG)는 공기 중으로 누출 되며 그중에서도 메탄가스의 누출은 기후에 많은 영향을 준다. 미국 도시의 거리에서 메탄가스 누출 데이터를 수집하였다. 본 논문은 메탄가스누출 정도를 예측하는 딥러닝(Deep Neural Network)방법을 제안하였으며 제안된 방법은 OrdinalEncoder(OE) 기반 K-means clustering과 Multilayer Perceptron(MLP)을 활용하였다. 15개의 특징을 입력뉴런과 오류역전파 알고리즘을 적용하였다. 데이터는 실제 미국의 거리에서 누출되는 메탄가스농도 오픈데이터를 활용하여 진행하였다. 우리는 OE 기반 K-means알고리즘을 적용하여 데이터를 레이블링 하였고 NG누출 예측을 위한 정규화 방법 OE, MinMax, Standard, MaxAbs. Quantile 5가지 방법을 실험하였다. 그 결과 OE 기반 MLP의 인식률이 97.7%, F1-score 96.4%이며 다른 방법보다 상대적으로 높은 인식률을 보였다. 실험은 SPSS 및 Python으로 구현하였으며 실제오픈 데이터를 활용하여 실험하였다.

밀키트 제품 리뷰 데이터를 이용한 텍스트 분석 사례 연구 (A Case Study on Text Analysis Using Meal Kit Product Review Data)

  • 최혜선;연규필
    • 한국콘텐츠학회논문지
    • /
    • 제22권5호
    • /
    • pp.1-15
    • /
    • 2022
  • 본 연구에서는 밀키트 제품 평가에 영향을 미치는 요인을 파악하기 위하여 밀키트 제품 리뷰 데이터에 대한 텍스트 분석을 수행하였다. 분석에 사용된 자료는 네이버 쇼핑 사이트에서 판매되고 있는 밀키트 제품에 대한 리뷰 334,498건을 스크래핑하여 수집하였다. 텍스트 자료에 대한 전처리 과정을 거쳐 제품 리뷰에 빈번히 등장하는 단어를 추출한 후 워드클라우드 및 감성분석을 수행하였다. 감성분석시 제품 리뷰에 대한 긍정 또는 부정의 레이블은 평점을 기준으로 설정하여 반응변수로 활용하였고, 입력변수로는 단어들의 정규화 단어빈도-역문서빈도 (TF-IDF) 값을 구하여 사용하였다. 리뷰의 극성을 판별하는 모형으로는 로지스틱 회귀모형, 서포트 벡터 머신, 랜덤 포레스트 알고리즘을 적용하였으며, 분류 정확도 및 해석가능성을 고려하여 로지스틱 회귀모형을 최종 모형으로 선택한 후 제품 범주별 감성분석 모형으로 사용하였다. 각 제품 범주별로 도출된 로지스틱 회귀모형으로부터 밀키트 제품 구매 후 긍·부정의 감성을 발생시킨 주요 요인들을 밝혀내었다. 결과적으로 텍스트 분석을 통해 밀키트 제품 개발 시 특정 카테고리, 메뉴, 재료에 대한 긍정 요소를 극대화하고 부정적 위험 요소를 제거할 수 있는 기반을 제공할 수 있음을 확인하였다.

물리정보신경망을 이용한 파동방정식 모델링 전략 분석 (Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks)

  • 조상인;최우창;지준;편석준
    • 지구물리와물리탐사
    • /
    • 제26권3호
    • /
    • pp.114-125
    • /
    • 2023
  • 편미분방정식의 해를 구하기 위한 여러 수치해법들의 한계와 순수 데이터 기반 기계학습의 단점을 극복하기 위해 물리정보신경망(physics-informed neural network, PINN)이 제안되었다. 물리정보신경망은 편미분방정식을 손실함수 구성에 직접 활용하여 기계학습 훈련에 물리적 제약을 주는 기법으로 파동방정식 모델링에도 활용될 수 있다. 그러나 물리정보신경망을 이용하여 파동방정식을 풀기 위해서는 신경망 훈련 시 입력에 대한 2차 미분이 수행되어야 하고, 그 결과로 출력되는 파동장은 복잡한 역학적 현상들을 포함하고 있어 섬세한 전략이 필요하다. 이 해설 논문에서는 물리정보신경망의 기본 개념을 설명하고 파동방정식 모델링에 활용하기 위한 고려사항들에 대해 고찰하였다. 이러한 고려사항에는 공간좌표 정규화, 활성함수 선정, 물리손실 추가 전략이 포함된다. 훈련자료의 공간좌표를 정규화한 후 사용하면 파동방정식 모델링을 위한 신경망 훈련에서 초기 조건이 더 정확하게 반영되는 것을 수치 실험을 통해 보였다. 또한 신경망을 통한 파동장 예측에 가장 적절한 활성함수를 선정하기 위해 여러 함수들의 특성을 비교했다. 특성 비교는 각 활성함수들의 입력자료에 대한 미분과 수렴성을 중심으로 이루어졌다. 마지막으로 신경망 훈련 중 손실함수에 물리손실을 추가하는 두가지 시나리오의 결과를 비교하였다. 수치 실험을 통해 훈련 초기부터 물리손실을 활용하는 전략보다 초기 훈련단계 이후부터 물리손실을 적용하는 커리큘럼 기반 학습전략이 효과적이라는 결과를 도출했다. 추가로 이 결과를 물리손실을 전혀 사용하지 않은 훈련 결과와 비교하여 PINN기법의 효과를 확인하였다.

획 밀도를 이용한 한영 구분 (Distinction of the Korean and English Character Using the Stroke Density)

  • 원남식;전일수;이두한
    • 한국정보처리학회논문지
    • /
    • 제4권7호
    • /
    • pp.1873-1880
    • /
    • 1997
  • 다중 문자 환경의 문서인식 시스템에서 문자를 인식하기 전에 문자의 종류를 먼저 구분하는 것은 인식률의 향상에 중요한 요인이 된다. 각 나라의 문자는 그 문자마다 고유의 구성상의 다양한 특징을 가진다. 본 연구에서는, 문자를 구분하기 위한 방법으로 획 밀도 값을 이용하였고, 대상 문자는 한글과 영문으로 한정하였다. 다양한 형태의 활자가 사용되는 문서에 적용하기 위해 입력 데이터는 정규화 과정을 거친 후 처리되었다. 제안된 방법은 90% 이상의 높은 확률로 한영 구분이 가능함을 실험 결과로써 입증하였다.

  • PDF

하이브리드 VLSI 신경망 프로세서에서의 양자화에 따른 영향 분석 (Analysis of the Effect on the Quantization of the Network's Outputs in the Neural Processor by the Implementation of Hybrid VLSI)

  • 권오준;김성우;이종민
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.429-436
    • /
    • 2002
  • 인공 신경망을 실제적인 응용 분야에 적용하기 위하여 하드웨어 시스템으로 구현하는 것이 필요하다. 하드웨어로 구현하는 방법에는 현재 하이브리드 VLSI 신경망 칩으로 구현하는 것이 가장 유망하다. 이미 학습된 신경망을 하이브리드 신경망 칩을 사용하여 구현하는 경우 뉴런 출력과 가중치 값의 양자화 과정이 필수적이다. 이러한 과정은 신경망의 출력층 뉴런의 이미 학습된 출력에 비해 왜곡을 야기한다. 본 논문에서는 이러한 신경망의 출력 왜곡에 대한 통계적 특성을 자세하게 분석하였다. 분석 결과는 신경망의 출력 왜곡을 줄이기 위해서는 입력 벡터의 정규화와 가중치 값들이 작아야 한다는 사실을 보여 주었다. 시계열 데이터에 대한 실험 결과는 분석 결과를 고려하여 학습된 신경망들의 경우 실제로 뉴런 출력 및 가중치 값의 양자화로 인한 출력층 뉴런의 출력 왜곡이 상당히 줄어들 수 있음을 명확히 보여 주었다.

HTM 기반의 주식가격 연속 예측 시스템 개발 (Development of a Continuous Prediction System of Stock Price Based on HTM Network)

  • 서대호;배선갑;김성진;강현석;배종민
    • 한국멀티미디어학회논문지
    • /
    • 제14권9호
    • /
    • pp.1152-1164
    • /
    • 2011
  • 주식 가격은 연속적으로 변화하는 스트림 데이터이다. 이러한 데이터의 특성상 시간의 흐름에 따라 주식 가격의 동향이 달라질 수 있기 때문에 주식 가격 동향의 예측은 가격이 갱신될 때 마다 연속적으로 이루어져야 한다. 본 논문은 HTM 모델을 이용하여 원하는 종목의 주식 가격 동향을 설정된 구간 간격에 따라 연속적으로 주식 가격 동향을 예측하는 새로운 방법을 제안한다. 이를 위해 먼저 정규화 과정을 거친 후 그 결과를 스트림 센서로 전달하는 선처리기와 연속적인 입력 데이터를 효과적으로 처리할 수 있는 스트림 센서를 제시한다. 또한, 각 레벨별 예측 결과를 저장하여 상위 단계로 전달하는 선 예측 저장 노드를 고안하고 이를 이용하여 주식 가격 동향을 예측하는 HTM 네트워크를 제시한다. 그리고 본 시스템을 실제 주식 가격으로 실험하여 그 성능을 제시한다.

Gait Type Classification Using Multi-modal Ensemble Deep Learning Network

  • Park, Hee-Chan;Choi, Young-Chan;Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.29-38
    • /
    • 2022
  • 본 논문에서는 멀티 센서가 장착된 스마트 인솔로 측정한 보행 데이터에 대해 앙상블 딥러닝 네트워크를 이용하여 보행의 타입을 분류하는 시스템을 제안한다. 보행 타입 분류 시스템은 인솔에 의해 측정된 데이터를 정규화하는 부분과 딥러닝 네트워크를 이용하여 보행의 특징을 추출하는 부분, 그리고 추출된 특징을 입력으로 보행의 타입을 분류하는 부분으로 구성되어 있다. 서로 다른 특성을 가지는 CNN과 LSTM을 기반으로 하는 네트워크를 독립적으로 학습하여 두 종류의 보행 특징 맵을 추출하였으며, 각각의 분류 결과를 결합하여 최종적인 앙상블 네트워크의 분류 결과를 도출하였다. 20~30대 성인의 걷기, 뛰기, 빠르게 걷기, 계단 오르기와 내려가기, 언덕 오르기와 내려가기의 7종류의 보행에 대해, 스마트 인솔을 이용하여 실측한 멀티 센서 데이터를 제안한 앙상블 네트워크로 분류해 본 결과 90% 이상의 높은 분류율을 보이는 것을 확인하였다.