유기발광소자는 자발광소자의 강점들과 낮은 구동 전압으로 발광효율이 높아 디스플레이 소자와 백색 조명 광원으로 응용 가능성 때문에 발광효율 증진에 대한 연구가 활발히 진행되고 있다. 유기물 내에서의 정공의 이동도가 전자의 이동도보다 높아 발광층에서 정공과 전자의 수의 불균형이 나타나 재결합율이 떨어져 발광효율이 낮아지는 문제점이 있다. 본 연구에서는 전자의 이동도의 향상을 통한 발광층에서의 정공과 전자 재결합 효율을 향상하기 위해 전자수송층과 발광층으로 사용되는 tris(8-hydroxyquinolate)aluminum (Alq3)층에 Alq3보다 높은 전자이동도를 가지는 7-diphenyl-1,10-phenanthroline (BPhen)을 전자 수송층에 도핑하여 유기발광소자를 제작하였다. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline을 정공저지층으로 사용하여 제작된 단일전자 소자를 이용하여 BPhen이 도핑된 전자 수송층을 사용한 소자가 Alq3만을 전자 수송층으로 사용한 소자보다 같은 전압에서 더 높은 전류밀도를 나타내었다. 전류밀도-전압특성 측정으로 전하 수송 메카니즘을 관찰하였다. 두 가지 전자 수송층을 사용하여 발광 소자를 제작하여 발광세기와 발광효율을 측정한 결과 도핑 된 전자 수송층을 사용하여 제작된 발광소자에서 발광세기와 발광효율이 향상되었다. 발광세기와 발광효율이 향상된 원인은 도핑된 전자수송층에서 높아진 전자의 이동도로 인하여 발광층에서 정공과 전자의 이동도가 균형을 이루어 전자-정공의 재결합 확률이 증가하기 때문이다. 도핑 된 전자 수송층을 사용하여 제작된 유기발광소자의 발광효율 향상에 대한 원인을 실험결과를 사용하여 설명 할 것이다.
유기발광소자는 낮은 구동전압과 높은 명암비, 높은 색 재현성을 장점으로 차세대 디스플레이로 주목 받고 있다. 또한, 유기발광소자는 다층 발광층을 사용하여 단일 소자에서 적색, 녹색, 및 청색의 광원을 동시에 표현할 수 있기 때문에 차세대 디스플레이와 백색 조명 광원으로 많은 응용 가능성을 보이고 있다. 특히 백색 조명과 관련된 유기발광소자 기술은 가정용면 광원과 농작물 재배 광원 등의 다양한 용도로 사용 가능하며, 낮은 전력 소모로 인한 친환경에너지로 활발한 연구가 진행 중이다. 고효율 백색 유기발광소자를 제작하기 위해서는 소자에 주입되는 정공과 전자의 양을 조절하여 발광층 내에서 다수의 전자-정공쌍을 형성하여야 하는데, 유기발광소자에서 정공의 이동도는 전자의 이동도보다 약 103 정도 크기 때문에 전자의 이동도를 증가할 필요가 있다. 본 연구에서는 전자의 이동도가 다른 tris(8-hydroxyquinolate)aluminum (Alq3)와 4,7-diphenyl-1,10-phenanthroline (BPhen)을 전자수송층으로 사용한 백색 유기발광소자를 제작하여 전기적 및 광학적 특성을 관찰하였다. BPhen 전자수송층을 사용한 유기발광소자는 Alq3 전자수송층을 사용한 유기발광소자보다 높은 전자이동도를 가지고 있어서 고효율의 유기발광소자 제작이 가능하다. 이러한 결과를 바탕으로 유기발광소자의 발광층으로 청색 빛을 내는 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl와 황색 빛을 내는 5,6,11,12-tetraphenylnaphthacene을 사용하여 백색 유기발광소자를 제작하고 전기적 및 광학적 특성을 조사하였다.
최근 유가가 배럴당 120달러를 돌파하면서 많은 사람들에게 에너지 문제에 대한 경각심과 자원의 효율적 이용이라는 점에서 많은 생각을 하게 된다. 유기광기전소자는 실리콘 태양전지에 비해 낮은 전력 변환 효율(PCE)과 짧은 수명 등의 문제로 아직 많은 연구가 필요한 실정이다. 하지만 유연한 광기전소자의 제조나, 페인트 또는 프린트 형태의 광기전소자의 응용 등을 고려할 할 때 쉬운 제조공정, 저렴한 단가 등에서 실리콘 태양전지에 비해 많은 이점을 가지고 있어 많은 사람들의 관심을 끌고 있다. 유기광기전소자의 낮은 효율은 낮은 정공과 전자의 이동도에서 차이가 발생한다. 낮은 이동도는 정공과 전자로 분리되어 전극으로 이동해야 하는데, 정공과 전자의 이동을 고분자로 구성된 광흡수층에서 제한하기 때문에 다른 태양전지에 비해 낮은 전력변환효율을 보이고 있다. 이의 개선을 위해 온 연구에서는 높은 전기 전도도를 보이는 CNT와의 혼합을 통해 유기광기전소자의 전기전도도를 높여 효율의 향상을 꾀하였다. 그 결과, CNT를 혼합한 소자에서는 전류가 증가한 것을 알 수 있었으나, 전체적인 효율의 향상은 꾀하지 못하였다. 이는 소자의 Voc 값의 감소로 인한 것으로 해석된다.
유기발광소자는 차세대 디스플레이로 각광받으며 모바일 디스플레이에 이어 대형 디스플레이의 상용화 단계에 이르고 있다. 유기발광소자의 효율을 높이기 위해서는 여러 가지 구조에 대한 연구가 진행되고 있다. 하지만 유기물 내에서는 정공 이동도가 전자 이동도보다 빠르기 때문에 유기발광소자의 발광층에서 전자와 정공이 효율적으로 균형을 이루기 위하여 전자 주입효율 증진에 대한 연구가 필요하다. 본 연구에서는 녹색 유기발광소자의 전자 주입 효율을 향상 하여 소자의 발광 효율을 증진하는 발광효율 향상 메커니즘을 규명하였다. Cesium nitrate(CsNO3)와 lithium quinolate (Liq)를 다층 전자주입층으로 사용한 녹색 유기발광소자는 indiumtin-oxide 양극전극 위에 진공 증착 방법을 사용하여 유기발광소자를 제작하였다. 정공수송층으로 N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), 발광층으로 tris (8-hydroxyquinoline) (Alq3), 전자수송층으로 Alq3와 4,7-diphenyl-l-10-phenanthroline (BPhen), 전자주입층으로 CsNO3/Liq와 Liq, Al을 음극 전극으로 각각 사용하였다. CsNO3/Liq와 Liq를 전자주입층과 Alq3와 BPhen 전자 수송층으로 각각 사용한 녹색 유기발광소자의 전자 주입 성능을 비교 하여 발광 효율 향상 메커니즘을 규명하였다. CsNO3/Liq 전자주입층을 사용한 유기발광소자가 Liq 전자주입층을 사용한 유기발광소자보다 전극으로부터 전자 주입효율이 향상됨을 알 수 있었다. 전자주입효율 향상으로 발광층의 전자와 정공의 재결합을 증가하여 녹색 유기발광소자의 효율이 증진되었고 구동전압이 낮아졌다.
The band structures of $Si_{1-x}Ge_x$ layers grown on $Si_{1-y}Ge_y$ substrate are calculated using k$\cdot$p and strain Hamiltonians. The hole drift mobilities in the plane direction are then calculated by taking into account the screening effect and the density-of-states of the impurity band. When $Si_{1-x}Ge_x$ is grown on Si substrate, the mobilities of (110) and (111) $Si_{1-x}Ge_x$ layers are larger than that of (001) $Si_{1-x}Ge_x$. However, due to the large defect and surface scattering, (110) and (111) $Si_{1-x}Ge_x$ layers may not be useful for the development of the fast device. Meanwhile, when Si is grown on $Si_{1-y}Ge_y$ substrate, the mobilities of (001) and (110) Si layers are greatly enhanced. Based on the amount of defect and the surface scattering, it is expected that Si grown on (001) $Si_{1-y}Ge_y$ substrate, where the Ge contents is larger than 10%(y>0.1), has the highest mobility.
나노 크기의 공간에서의 물질의 이동은 표면의 환경에 의해 영향을 받을 수 있다. 소수성그래핀과 친수성 실리콘 기판 사이의 계면에서의 물의 확산은 호기심을 자극할 뿐만 아니라 그래핀 소자의 특성을 좌우하는 전하도핑(charge doping) 현상을 이해하는데 중요한 모델이 된다. 본 연구에서는 라만 분광법과 원자 힘 현미경을 사용하여 그래핀/SiO2 계면 사이의 물의 확산 현상과 그에 따른 정공 밀도 변화를 탐구하였다. 열처리 된 그래핀은 기판과의 상호 작용에 의해 높은 밀도의 정공(electron hole)으로 도핑 되어 있으며, 이를 물에 담지 하였다. 본 실험에서는 이차원 라만 분광법을 통해 물 속에 담겨진 그래핀의 정공 밀도의 공간적인 분포를 확산 시간에 따라 조사하였다. 물의 확산은 시료에 따라 수 시간에서 수 일의 시간대에 걸쳐 그래핀 가장자리에서 중앙으로 이루어진다는 사실을 확인하였다. 또한 물의 계면 확산으로 인하여 전하 밀도가 감소한다는 사실은 열처리 된 그래핀의 정공 도핑을 유발하는 산소가 계면에 존재한다는 것을 증명한다.
차세대 디스플레이 소자 기술로 많은 주목을 받고 있는 유기발광소자는 현재 전류효율 향상과 낮은 구동전압과 관련하여 연구가 활발하게 진행되고 있다. 음극과 양극 전극에서 유기물 층으로 전자와 정공의 주입이 많아져도 유기발광 층에서 재결합하는 전자와 정공의 균형이 맞지 않으면 전류 효율과 휘도가 낮아지는 문제점이 있다. 유기발광소자에서 홀 주입 층으로 사용하는 자기조립박막층은 일반적인 유기발광소자에서 정공의 이동도가 낮은 단점을 보완하여 발광층에서 전자와 정공의 균형을 향상하여 전류효율을 향상과 낮은 구동전압 특성을 나타낸다. 본 연구에서는 홀 주입 층으로 사용되는 각각의 자가조립박막을 형성할 물질이 용해되어 있는 에탄올 용액에 ITO를 담가 자가조립박막을 ITO 위에 형성 시킨다. 각각의 홀 주입 층으로 사용된 자가조립박막층의 chain group의 길이와 ITO와 결합하는 head group에 따라 달라지는 쌍극자 모멘트에 의한 홀 주입의 변화를 통해 각 소자의 전류효율과 구동전압 관찰할 수 있었다. 자가조립박막층의 chain group의 길이가 길어질수록 전극으로부터 유기물 층으로의 홀 주입을 방해하여 발광 층에서의 전자와 정공의 재결합 균형이 무너짐으로써 전류효율과 휘도가 낮아지는 경향을 볼 수 있었다. 이 연구 결과는 자가조립박막층을 홀 주입 층으로 대체하는 구조로 유기발광소자의 효율 향상에 대한 기초자료로 활용할 수 있다.
유기발광소자는 빠른 응답속도, 높은 색재현성, 높은 명암비의 장점을 가지고 있어 차세대 디스플레이로 각광 받고 있으며, 이미 소형 디스플레이로 상용화되고 있다. 유기발광소자에서는 발광효율을 높이기 위해서 전하들의 균형이 매우 중요하다. 유기발광소자 내 정공의 이동도는 전자의 이동도보다 빠르기 때문에 정공의 이동도를 감소하거나, 전자의 이동도를 증가하여 전하들의 균형을 형성함으로 유기발광소자의 효율을 증진시키는 연구가 진행되고 있다. 본 연구는 유기발광소자의 전자 수송층을 다층구조로 적층하여 전자의 이동도를 증가하여 효율이 증진하는 메커니즘을 기본으로 하였다. 전자 수송층을 tris(8-hydroxyquinoloine)aluminum ($Alq_3$) 단일층, 4,7-diphenyl-1, 10-phenanthroline (BPhen)과 $Alq_3$의 혼합층및 BPhen과 $Alq_3$ 다층 구조로 제작한 유기발광소자의 전기적, 발광 특성을 비교 분석하였다. BPhen은 lowest unoccupied molecular orbital (LUMO) 준위가 $Alq_3$의 LUMO 준위와 유사하여 전자 주입이 효율적으로 일어나며, 또한 낮은 highest occupied molecular orbital (HOMO) 준위는 정공 저지층의 역할을 하여 발광층 내에서 전하의 균형을 효율적으로 맞춰준다. 유기발광소자는 N,N,'-bis-(1-naphthyl)-N,N'-diphenyl1-1'-biphenyl-4,4'-diamine (NPB)/ $Alq_3$/ 다양한 전자수송층 / lithium quinolate (Liq)/ aluminium (Al) 음극 전극으로 각각 증착하여 제작하였다. 전자수송층을 다층 구조로 사용한 유기발광소자는 발광효율이 혼합층과 단일층에 비해 높았으며, 최대 발광효율은 전류밀도가 273 mA/cm2일때 4.5 cd/A였다. 다층구조의 전자수송층에서 다층으로 증착된 BPhen이 효율적인 전자 주입 및 전공 저지하는 역할을 최적화 하여 발광층에 더 많은 엑시톤이 형성하여, 유기발광소자의 효율을 증진시켜 준다는 사실을 알 수 있었다.
본 논문에서는 strained Silicon-on-Insulator (sSOI) 기판에 제작된 triple-gate MOSFETs 의 이동도와 단채널 효과에 대하여 분석 하였다. Strained 실리콘에 제작된 소자는 전류의 방향이 <110> 밤항일 경우 전자의 이동도는 증가하나 정공의 이동도는 오히려 감소하는 문제점이 있다. 이를 극복하기 위하여 소자에서 전류의 방향이 <110>방향에서 45 도 회전된 <100> 방향으로 흐르게 제작하였다. Strain이 가해지지 않은 기판에 제작된 동일한 구조의 소자와 비교하여 sSOI 에 제작된 소자에서 전자의 이동도는 약 40% 정공의 이동도는 약 50% 증가하였다. 채널 길이가 100 nm 내외로 감소함에 따라 나타나는 drain induced barrier lowering (DIBL) 현상, subthreshold slope (SS)의 증가 현상에서 sSOI에 제작된 소자가 상대적으로 우수한 특성을 보였으며 off-current leakage ($I_{off}$) 특성도 sSOI기판이 더 우수한 특성을 보였다.
정공주입 버퍼층(PTFE)두께에 변화에 따른 유기발광소자 전압-전류-휘도 효율을 측정한 결과 ITO/PTFE/Al 구조에서 두께가 증가하면 전류 밀도 및 전압이 증가하며, 두께가 0.7 (nm)일 때 부성 저항 영역이 나타났었고, ITO/PTFE/NPB/$Alq_3$/Al 구조에서 두께가 1.0 [nm]에서는 가장 좋은 휘도와 효율을 나타났었다. 두께가 증가하면 이것은 PTFE 내의 정공의 이동을 어렵게 하기 때문에 효율이 감소하는 것으로 판단된다. 그래서 적당한 PTFE 두께만이 가장 좋은 휘도와 효율을 얻을 수가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.