• Title/Summary/Keyword: 정격 변형률

Search Result 11, Processing Time 0.031 seconds

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Development of 6-component Load Cell Using Plate Beams (평판보를 이용한 6분력 로드셀 개발에 관한 연구)

  • 김갑순;이세헌;엄기원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.109-115
    • /
    • 1998
  • This paper describes the development of a 6-component load cell with plate beams which may be used to measure forces Fx, Fy, Fz and moments Mx, My, Mz simultaneously in industry. We have analyzed the bending strains on the surface of the beams under forces or moments by using Finite Element Method and designed the sensing elements of 6-component load cell. We have also determined the attachment location of strain gages of each load cell and fabricated 6-component load cell. To evaluate the rated strain and interference error of each load cell, we have carried out characteristic test of 6-component load cell.

  • PDF

Structural Design and Evaluation of Six-component Wheel Dynamometer (6축 휠 동력계의 구조설계 및 평가)

  • Kim, Man Gee;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • Wheel dynamometers are used to measure dynamic load that is conveyed from the road to a vehicle while driving. In this paper, two types of six-component wheel dynamometers utilizing shear deformation and bending deformation were designed and evaluated. Prior to designing the shear and bending type wheel dynamometers, the shear and bending deformation behaviors of the basic structure of the wheel dynamometer itself were analyzed using finite element analysis. Strain analysis was performed repeatedly in order to obtain a similar output sensing strain for each load component. The design was modified with a bridge circuit in order to minimize coupling strain. The results indicated that the shear type dynamometer was expected to obtain stable characteristics due to uniform strain distribution while the bending type dynamometer was expected to obtain high-quality sensitivity performance due to consistent output sensitivity.

Development of the Intelligent Gripper Using Two 3-axis Force Sensor (3 축 힘센서를 이용한 지능형 그리퍼 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

High-Voltage Pulsed Power Modulator based on single IGBT switch with Fast-Rising Time (빠른 상승률 갖는 단일 IGBT 스위치 기반 고전압 펄스 파워 모듈레이터)

  • Liu, Chang-yu;Cho, Chan-Gi;Song, Seung-Ho;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.46-48
    • /
    • 2019
  • 본 논문은 Discontinuous Conduction Mode(DCM) 플라이백 컨버터로 생성한 고전압 펄스를 스파크 갭으로 펄스 상승 시간을 줄이는 방법에 관하여 다룬다. 이러한 방법으로 생성된 빠른 상승률 특성을 가지는 고전압 펄스 전원장치는 친환경 가스 처리 분야에 사용할 수 있다. 기존 스태킹 구조의 펄스 전원 장치는 많은 수의 스위치들과 에너지 저장 소자가 필요하므로 부피가 커지고 제조 단가가 증가하는 반면, 분 논문에 제안된 전원 장치는 구조를 단순화하여 전체 시스템의 소형화 및 제조 단가를 낮춘 점을 특징으로 한다. 제안된 설계 토폴로지는 플라이백 변압기 2차 측에 다이오드의 사용 유무에 따라 두 개의 변형된 회로로 응용 가능 하다. 변압기 2차측에 다이오드를 사용하면, 음의 성분 없이 깨끗한 고전압 출력 펄스를 만들 수 있지만 사용한 다이오드의 전압 정격을 고려해야 한다. 다이오드를 사용하지 않는다면, 고전압 출력 펄스에 음의 성분이 발생하지만 비용과 부피를 최대한 줄일 수 있다. PSIM 시뮬레이션을 사용하여 제안하는 전원 장치의 23kV, 0.5 ㎲, 10 ns rising time의 출력 펄스 발생 성능을 검증하고, 다이오드 사용에 따른 출력 펄스의 차이점을 비교하였다.

  • PDF

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Development of a 6-axis robot's finger force/moment sensor for making a robot's gripper (로봇의 그리퍼 제작을 위한 6 축 로봇손가락 힘/모멘트센서의 개발)

  • Kim, Gab-Soon;Lee, Hun-Doo;Park, In-Chul;Son, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.758-763
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for making a robot's gripper. In order to safely grasp and unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it.

  • PDF

Development of a small 6-axis force/moment sensor for robot's finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순;이상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF

Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

Full Scale Structural Testing of Small Wind Turbine Composite Blade (풍력발전용 소형복합재 블레이드의 실규모 구조시험)

  • Kim, Hong-Kwan;Kim, Tae-Seong;Lee, Jang-Ho;Moon, Byung-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1407-1413
    • /
    • 2011
  • In this paper, the structural design for composite blade was performed and full scale structural test was conducted to verify the structural design and integrity of composite blade. Firstly, FE analysis was performed using commercial software ABAQUS under conditions of rated wind speed and Case H in IEC 61400-2. Lay-up sequence and ply thickness were designed based on FE results. And to verify the structural design, full scale structural test was conducted according to IEC 61400-2 under identical loading conditions of FE analysis. Finally, the force-deflection and local strain behavior of composite blade were evaluated.