• Title/Summary/Keyword: 접합면

Search Result 512, Processing Time 0.025 seconds

A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages (석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구)

  • Lee, Dong-sik;Kim, Hyun-yong;Kim, Sa-dug;Hong, Seong-geol
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.212-228
    • /
    • 2013
  • Stone cultural heritages are repaired by the use of metal stiffeners. The problem is that this type of repair has been based on the experience of workers without specific guidelines and has caused various problems. This is to suggest the structural reinforcement and behavioral characteristics of metal rods to minimize the secondary damage of materials and have the specimens tested and verified to establish the guidelines on how to insert metal stiffeners. When only epoxy resin is applied to the cut surface, only 70% of the properties of the parent material are regenerated and it is required to structurally reinforce the metal stiffener for the remaining 30%. The metal rod is under the structural behavior after the brittle failure of stone material and the structural behavior does not occur when the metal stiffener is below 0.251%. When it accounts for over 0.5%, it achieves structural reinforcement, but causes secondary damage of parent materials. The appropriate ratio of metal stiffener for the stone material with the strength of $1,500kgf/cm^2$, therefore, should be between 0.283% and 0.377% of the cross section of attached surface to achieve reversible fracture and ductility behavior. In addition, it is more effective to position the stiffeners at close intervals to achieve the peak stress of metal rod against bending load and inserting the stiffener into the upper secions is not structurally supportive, but would rather cause damage of the parent material. Thus, most stiffeners should be inserted into the lower part and some into the central part to work as a stable tensile material under the load stress. The dispersion effect of metal rods was influenced by the area of reinforcing rods and unrelated to their diameter. However, it ensures stability under the load stress to increase the number of stiffeners considering the cross section adhered when working on large-scale structures. The development length is engineered based upon the diameter of stiffener using the following formula: $l_d=\frac{a_tf_y}{u{\Sigma}_0}$. Also, helically-threaded reinforcing rods should be used to perform the behaviors as a structural material.

Comparison of marginal fit before and after porcelain build-up of two kinds of CAD/CAM zirconia all-ceramic restorations (두 종류의 CAD/CAM 지르코니아 전부도재관의 도재 축성 전후의 변연적합도 비교)

  • Shin, Ho-Sik;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.528-534
    • /
    • 2008
  • Purpose: Marginal fit is one of the important components for the successful prosthodontic restoration. Poor fitting margin of the restoration causes hypersensitivity, secondary caries, and plaque accumulation, which later result in prosthodontic failure. CAD/CAM zirconia all-ceramic restorations, such as $LAVA^{(R)}$ (3M ESPE, St.Paul, MN) and $EVEREST^{(R)}$ (KaVo Dental GmbH, Biberach, Germany) systems were recently introduced in Korea. It is clinically meaningful to evaluate the changes of the marginal fit of the CAD/CAM zirconia systems before and after build-up. The purposes of this study are to compare the marginal fit of the two CAD/CAM all-ceramic systems with that of the ceramometal restoration, before and after porcelain build-up Material and methods: A maxillary first premolar dentiform tooth was prepared with 2.0 mm occlusal reduction, 1.0 mm axial reduction, chamfer margin, and 6 degree taperness in the axial wall. The prepared dentiform die was duplicated into the metal abutment die. The metal die was placed in the dental study model, and the full arch impressions of the model were made. Twenty four copings of 3 groups which were $LAVA^{(R)}$, $EVEREST^{(R)}$, and ceramometal restorations were fabricated. Each coping was cemented on the metal die with color-mixed Fit-checker $II^{(R)}$ (GC Cor., Tokyo, Japan). The marginal opening of each coping was measured with $Microhiscope^{(R)}$ system (HIROX KH-1000 ING-Plus, Seoul, Korea. X300 magnification). After porcelain build-up, the marginal openings of $LAVA^{(R)}$, $EVEREST^{(R)}$,and ceramometal restorations were also evaluated in the same method. Statistical analysis was done with paired t-test and one-way ANOVA test. Results: In coping states, the mean marginal opening for $EVEREST^{(R)}$ restorations was $52.00{\pm}11.94\;{\mu}m$ for $LAVA^{(R)}$ restorations $56.97{\pm}10.00\;{\mu}m$, and for ceramometal restorations $97.38{\pm}18.54\;{\mu}m$. After porcelain build-up, the mean marginal opening for $EVEREST^{(R)}$ restorations was $61.69{\pm}19.33\;{\mu}m$, for $LAVA^{(R)}$ restorations $70.81{\pm}12.99\;{\mu}m$, and for ceramometal restorations $1115.25{\pm}23.86\;{\mu}m$. Conclusion: 1. $LAVA^{(R)}$ and $EVEREST^{(R)}$ restorations in comparison with ceramometal restorations showed better marginal fit, which had significant differences (P < 0.05) in coping state and also after porcelain build-up . 2. The mean marginal opening values between $LAVA^{(R)}$ and $EVEREST^{(R)}$ restorations did not showed significant differences after porcelain build-up as well as in coping state (P > .05). 3. $EVEREST^{(R)}$, $LAVA^{(R)}$ and ceramometal restorations showed a little increased marginal opening after porcelain build-up, but did not show any statistical significance (P > .05).