• Title/Summary/Keyword: 접선방향 유입구

Search Result 7, Processing Time 0.027 seconds

Internal Flow Stability for Tangential Entry Conditions in a Swirl Injector (스월 인젝터에서 접선방향 유입구 조건이 내부유동의 안정성에 미치는 영향에 대한 연구)

  • Kim, Sung-Hyuk;Khil, Tae-Ock;Cho, Seong-Ho;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-37
    • /
    • 2008
  • Many theoretical and experimental studies have been conducted to investigate elements of swirl injector hydrodynamics, such as variations in liquid film thickness or air core diameter. From these studies, some theoretical relationships have been established through an approximate analytical solution of flow hydrodynamics in a swirl nozzle. However, experimental studies on elements such as the stability of internal flow have not produced conclusive results. In this study, the stability of the internal flow under tangential entry conditions was examined by visualizing the formation of the air core in the swirl chamber and measuring the liquid film thickness in the orifice.

Internal Flow Characteristics for Tangential Entry Conditions in a Swirl Injector (스월 인젝터에서 접선방향 유입구 조건에 따른 내부유동의 특성 연구)

  • Kim, Sung-Hyuk;Khil, Tae-Ock;Cho, Seong-Ho;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.115-118
    • /
    • 2008
  • Many theoretical and experimental studies have been conducted to investigate elements of the hydrodynamic process, such as variations in liquid film thickness or air core diameter. From these studies, some theoretical relationships have been established through an approximated analytical solution of flow hydrodynamics in a swirl nozzle. However, experimental studies on elements such as internal flow have not produced conclusive results. In this study, the variations and stability of the internal flow were examined by visualizing the air core and measuring the liquid film thickness.

  • PDF

스월 인젝터의 Recess변화가 미립화에 미치는 영향

  • 설재훈;한풍규;황성하;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.6-7
    • /
    • 2002
  • 동축형 인젝터는 이미 여러 발사체에서 널리 쓰이고 있는 인젝터의 한 형태로서 또 다른 인젝터 방식인 충돌형과 비교하여 구조가 복잡한 단점이 있는 반면에 연소 현상의 불안정성에 대해 덜 민감하며 미립화와 혼합의 특성도 우수하다. 이런 동축형 인젝터는 크게 스월 방식과 shear 방식으로 나누어진다. 이중에서 스월 인젝터는 산화제와 연료의 유입구에 접선 방향의 속도를 줌으로써 conical sheet 형태의 분무장을 형성하여 미립화와 혼합을 꾀하는 방식이다. 이와 같은 스월 인젝터에서 중요한 변수 중에 하나인 recess의 변화에 대해 분무 형상과 미립화 혼합특성까지 파악해보았다.

  • PDF

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

Experimental Study of Spray Characteristics on the Throttleable Dual Manifold Injector (이중 매니폴드 가변추력 분사기의 분무 특성에 관한 실험적 연구)

  • Youn, Jung-Soo;Kim, Sung-Hyuk;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.22-30
    • /
    • 2011
  • There is a many way of LPRE throttling methods, high-pressure-drop systems, dual-manifold injector, gas injection, multiple chambers, pulse modulation and movable injector components. Especially dual-manifold injector is essentially combines two fixed-area injectors into a common structure, with independent feed systems controlling flow to each injector manifold. In this paper, using indirect photography and liquid film thickness measurement with various injection pressure and tangential entry diameter to decide stability of spray over a wide thrust range in dual manifold injector.

Study on the Fluid Dynamics Modeling in Artificial Lung Assist Device (인공 폐 보조장치 내에서의 유체 유동 모델링에 대한 연구)

  • Kim, Gi-Beum;Park, Young-Ran;Kim, Shang-Jin;Hong, Chul-Un;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Seong-Jong;Kim, Min-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.230-237
    • /
    • 2011
  • In this study, the characteristic of fluid flow in the new type lung assist devices has been established using computational fluid dynamics(CFD). For the modeling, the hollow fiber was ignored, and vertical types and tangential types were used for the model. Which was to analyze the flow characteristics of the fluid flow model when there exists 1 and 2 input/output ports, and when the input/output ports is located at the center of the cylinder and at the tangential direction with the cylinder wall. The modeling results showed that it was possible to eliminate no-flow region(stagnant layer) as shown in the vertical type when an inlet and an outlet were installed on the tangential direction of the cylinder as shown in the tangential type. Also, in the tangential type, vortex-type flow appeared as dominant, and it showed a complicated flow not deviated to one side. When the number of input/output was two, there was no deviated flow, and complicated flows were generated all across the tube. From the test result, it was found that input/output of flow was tangential type and complicated flows with no stagnant layer would be generated when there are two inputs/outputs, respectively.

A Study on the Cold Flow Characteristics of a Flue Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • Thermal NOx is generated in a high temperature environment in a combustion facilities. Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in combustion devices. In the present study, the computational fluid dynamic analysis was accomplished to elucidate the cold flow characteristics in the flue gas recirculation burner with both outlets opening. Because the reciculation pipes is installed toward the tangential direction, the swirling flow is formulated in the burner and the phenomenon of the reverse flow creation is detected at the center area of circular burner. We are confirmed that this is the similar trend with the burner with one side outlet closed. From the present study, it was seen that the recirculated inflow from both recirculated burner outlets increased by about 5% compared to the burner with one side outlet opening. At the outlet located at the exhaust gas recirculation pipe inlet(gas exit 1), the inlet flow was formed in the entire region. At the opposite outlet(gas exit 2), the total flow was discharged, but the center part of the burner was observed to have a reverse flow. The flow rate at the gas exit 2 was 3 ~ 5 times larger than the flow rate at the gas exit 1.