3차원 스캔 데이터는 물체의 형상정보를 표현하는 Euclidian 공간상의 점데이터의 집합으로 정의될 수 있으며. 복잡한 3D 컨텐츠 및 모델을 사실적이고 효율적으로 생성하기 위한 기초 정보로 사용된다 최근 3차원 스캐닝기술의 발전으로 고정밀도의 형상정보뿐만 아니라 색상정보의 획득이 가능해 졌으며, 데이터의 용량이 비약적으로 증가하였다. 본 논문에서는 기존의 형상기반 점데이터 감소 방법의 한계를 극복하기 위해 색상이 동시에 고려되는 효율적인 점데이터 감소방법을 제안한다.
본 연구의 목적은 GPS관측에 의한 세계측지계 성과의 산출방안을 연구하는데 그 목적이 있다. GPS 관측 데이터와 상시관측소의 데이터를 활용하여 세계측지계 성과를 산출하기 위한 방안을 연구한다. GPS 관측 데이터의 후처리 결과 상시관측소의 데이터를 사용하지 않았을 경우와 사용하였을 경우의 폐합차를 분석한 결과 모두 정밀1차 기준점 측량작업규정에 만족함을 알 수 있었다. 또한 GPS상시관측소의 데이터를 활용하여 각 측점 지점의 좌표를 산출한 결과, 상시관측소 3개소의 데이터를 사용하였을 경우에 비해 사용하지 않았을 경우의 오차가 가장 크게 나타났으며 1개소 사용, 2개소 사용할 때 점차적으로 오차가 감소하고 있음을 알 수 있었다. 따라서 상시관측소를 고정점으로 사용하되 적어도 3점이상의 점을 사용하여야 함을 알 수 있었다. 본 연구는 제한된 일부 지역을 대상으로 GPS 상시관측소의 관측 데이터를 사용하여 세계측지계의 성과를 산출 한 연구로 향후 광범위한 지역에서의 GPS 상시관측소의 활용에 대한 심도 있는 연구가 진행되어야 할 것이다.
본 논문에서는 dense point cloud 의 평면영역에서 발생하는 bump 을 줄이기 위한 방법을 제시한다. 이상적인 point cloud 의 평면영역에서 점의 위치의 차이가 균일하다는 특성을 이용하여 점의 위치를 재구성하는 방식을 제시한다. 또한 더 작은 개수의 점으로 물체를 나타낼 수 있으며, 더 작은 잡음이 나타나는 sparse point cloud 의 성질을 고려하여 dense point cloud 의 점의 개수 또한 감소시킨다. 따라서 제안하는 알고리즘을 적용하여 dense point cloud 의 잡음을 감소시키면 평면영역의 bump 감소 및 점 개수의 감소를 통한 데이터 전송 시 더 작은 크기로 보낼 수 있다.
네트워크 기술의 발달에 따른 서비스의 증가는 네트워크 트래픽과 함께 취약점도 증대하여 이를 악용하는 행위도 늘어나고 있다. 따라서 네트워크 침입탐지 시스템은 증가하는 트래픽의 양을 처리할 수 있어야 하며, 악의적인 행동을 효과적으로 탐지 할 수 있어야 한다. 증가하는 트래픽을 효과적으로 처리하고 탐지의 정확성을 높이기 위해 처리 데이터를 감소시키는 기술이 요구된다. 이러한 방법들은 크게 데이터 필터링, 척도 선택, 데이터 클러스터링의 영역으로 구분되며, 본 논문에서는 척도 선택의 방법으로 데이터 처리의 감소 및 효과적 침입탐지를 수행할 수 있음을 보이고자 한다. 실험 데이터는 KDDCUP 99 데이터 셋을 이용하였으며, 통계적 척도선택의 방법으로 분류율, 오탐율, 거리값, 규칙, 선택된 척도 등을 제시함으로써 침입 탐지 시 데이터 처리량이 감소하였고, 분류율은 증가, 오탐율은 감소하여 침입 탐지 정확성이 높아짐을 알 수 있었다. 또한 본 논문에서 제시한 방법이 다른 관련연구에서 제시한 선택 척도보다 높은 정확성을 보임으로써 보다 유용함을 증명할 수 있었다.
최근 무선 센서 네트워크는 멀티미디어 센서 노드에서 비디오나 이미지와 같은 멀티미디어 데이터 수집을 바탕으로 고품질의 모니터링을 수행한다. 그러나 멀티미디어 데이터는 크기가 매우 크므로 데이터 전송 과정에서 특정 노드에 과도한 에너지 소모를 야기하여 전체 네트워크 수명이 감소하는 문제점이 있다. 이러한 점을 고려하여, 본 논문에서는 무선 멀티미디어 센서 네트워크에서 고효율 데이터 압축 기법을 제안한다. 제안하는 기법에서는 멀티미디어 데이터의 특성을 고려한 낮은 순위 비트 데이터 삭제 기반의 1단계 압축 및 중국인의 나머지 정리 기반의 2단계 압축으로 구성된 다중 압축을 수행함으로써 데이터 크기를 감소시킨다. 성능평가 결과, 기존 압축 기법에 비해 데이터 전송률이 평균 약 56% 감소하였다.
주성분 분석 기법(PCA)는 가장 널리 사용되는 데이터 차원 감소 (dimensionality reduction) 기법으로 알려져 있다. 하지만 데이터에 이상점 (outlier)가 존재하는 환경에서는 성능이 크게 저하된다는 단점을 가지고 있다. Rank-Sparsity(Robust PCA) 기법은 주어진 행렬을 low-rank 행렬과 저밀도(sparse)행렬의 합으로 분해하는 방식으로, 이상점이 많은 환경에서 PCA기법을 효과적으로 대체할 수 있는 알고리즘으로 알려져 있다. 본 고에서는 RPCA 기법을 간략히 소개하고, 그의 적용분야, 및 알고리즘에 관한 연구들을 대해서 알아본다.
본 논문은 3차원 지형을 현실감 있고 효율적으로 구축하기 위하여, 등고선 데이터로부터 지형의 특징점을 추출하고 이를 이용하여 3차원 지형 데이터를 복원하는 방법을 제안한다. 래스터 기반의 거리변환기법 알고리즘을 사용하여 2차원의 등고선 데이터로부터 3차원 지형을 생성하며, 생성된 3차원 지형정보로부터 지형의 특징점을 추출한다. 복원된 3차원 지형을 격자망 형태로 시각화하는데, 이때 특징점의 높이정보를 이용함으로써 지형을 표시하는데 요구되는 정보의 크기를 감소시킨다. 제안한 방법은 사용자가 상호대화식으로 수행할 수 있는 프로그램으로 윈도우 환경의 PC상에서 구현되었다. 이 프로그램의 실험결과는, 기존의 방법보다 적은 데이터양으로 3차원 지형을 시각화할 수 있음을 보여준다.
최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.
다차원 데이터를 온라인으로 분석하기 위해서는 사전에 집계 테이블들을 계산해 둔다. 대용량 고차원 데이터의 경우는 집계 테이블의 분량이 천문학적으로 방대하기 때문에 사전 집계 계산이 현실적으로 불가능한 경우가 많다. 고차원 데이터 처리에 관한 연구로는 데이터의 차원 수를 감소시키거나 인덱스를 압축하여 질의처리 시간을 단축하려는 연구를 들 수 있는데, 이러한 방법들은 고차원 데이터의 온라인 분석시에 발생하는 데이터 폭발 현상을 근본적으로 해결하지는 못한다. 본 연구에서는 고차원 데이터가 분석될 때 실제로 저차원 집계 테이블들이 주로 사용된다는 점에 착안하여 데이터 폭발 현상을 감소시키면서 데이터를 분석하는 방안을 제시한다 이 방법은 사전 집계 연산을 할 때 크기가 방대한 고차원 집계 테이블들의 생성을 생략하고, 3-6차원 또는 그 이하 차원의 집계 테이블들만을 고속으로 동시에 생성하는 방법이다.
컴퓨터와 정보통신기술의 발전에 따라 디지털 콘텐츠의 생산과 네트워크를 통한 유통이 자유롭게 되었고 여러 분야에서 디지털 콘텐츠의 수요가 급증하여 콘텐츠 시장이 급성장하고 있으며 지리정보 데이터와 같은 대용량의 데이터를 저장하고 이를 효율적으로 관리할 수 있어야 한다. 본 논문에서는 이전 지리정보 데이터와 업데이트된 지리정보 데이터를 비교하여 그 둘 사이에 상이점들을 고압축 표현하고 효율적으로 관리하고자 한다. 업데이트된 지리정보 데이터 전체가 전송되는 것이 아니라 고압축된 상이점만 전송되기 때문에 네트워크 트래픽이 감소하고 대용량 GeoContents의 유통 및 온라인 서비스 시 다운로드 시간을 단축시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.