• Title/Summary/Keyword: 점하중

Search Result 770, Processing Time 0.032 seconds

The Structual Restoration on Gyeongju-Style Piled Stone-Type Wooden Chamber Tombs (경주식 적석목곽묘의 구조복원 재고)

  • Gweon, Yong Dae
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.66-87
    • /
    • 2009
  • The definition of the structure of wooden chamber tomb(piled stone-type) is as follows. It is a tomb with wooden chamber, and stones were piled on top of the wooden chamber, and then a wooden structure was placed on top of the piled stones, and more stones were piled on top of the wooden structure, and sealed with clay. Of course this definition can vary according to periods, the buried, etc. Gyeongju-style piled stone type wooden chamber tombs have some distinguished characteristics compared to general definition of piled stone type wooden chamber tombs. Outside the wooden chamber, either stone embankments or filled-in stones were layed out, and pilet-in stones are positioned right above the wooden chamber, and almost every class used this type, and finally, it is exclusively found in Gyeongju area. First generations of this Gyeongju-style piled stone type wooden chamber tombs appeared in first half of 5th century. These tombs inherited characteristics like ground plan, wooden chamber, double chamber(inner chamber and outer chamber), piled stones, burial of the living with the dead, piled stones, from precedent wooden chamber tombs. However these tombs have explicit new characteristics which are not found in the precedent wooden chamber tombs such as stone embankments, wooden pillars, piled stones(above ground level), soil tumuluses. stone embankments and wooden pillars are exclusively found on great piled stone type above-ground level wooden chamber tombs such as the Hwangnamdaechong(皇南大塚). Stone embankments, wooden pillars, piled stones(above ground level) are all elements of building process of soil tumuluses. stone embankments support outer wall of above-ground level wooden chambers and disperse the weight of tumuluses. Wooden pillars functioned as auxiliary supports with wooden structures to prevent the collapse of stone embankments. Piled stones are consists of stones of regular size, placed on the wooden structure. And after the piled stones were sealed with clay, tumulus was built with soil. Piled stones are unique characteristics which reflects the environment of Gyeongju area. Piled stone type wooden chamber tombs are located on the vast and plain river basin of Hyeongsan river(兄山江). Which makes vast source of sands and pebbles. Therefore, tumulus of these tombs contains large amount of sands and are prone to collapse if soil tumulus was built directly on the wooden structure. Consequently, to maintain external shape of the tumulus and to prevent collapse of inner structure, piled stones and clay-sealing was made. In this way, they can prevent total collapse of the tombs even if the tumulus was washed away. The soil tumulus is a characteristic which emerges when a nation or political entity reaches certain growing stage. It can be said that after birth of a nation, growing stage follows and social structure will change, and a newly emerged ruling class starts building new tombs, instead of precedent wooden chamber tombs. In this process, soil tumulus was built and the size and structure of the tombs differ according to the ruling class. Ground plan, stone embankments, number of the persons buried alive with the dead, quantity and quality of artifacts reflect social status of the ruling class. In conclusion, Gyeongju-style piled stone type wooden chamber tombs emerged with different characteristics from the precedent wooden chamber tombs when Shilla reached growing stage.

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

An experimental study on diameter increase of orthodontic wire by electroplating (전기도금을 이용한 스테인레스 스틸 선재의 직경 증가에 관한 실험적 연구)

  • Cho, Jin-Hyoung;Sung, Young-Eun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.121-130
    • /
    • 2003
  • The purpose of this study was to evaluate the possibile clinical application of electroplating to increase diameter of an orthodontic wire, through examining the change of physical properties. The diameter of stainless steel orthodontic wire was increased from 0.016 inch to 0.018 inch by electroplating in a bath of nickel sulfate 100g/L, nickel chloride 60g/L, boric acid 30g/L, and sodium chloride 50g/L, under the conditions of 1.7V, $25\~29^{\circ}C\;and\;3.1\~3.3pH$. During the electroplating, the rate of diameter increase was measured every minute. To investigate uniformity, the diameter was measured at three different locations of each wire specimen aster electroplating. An X-ray diffraction test was performed to analyze the nature of the electroplated metal. Following heat treatment to improve adhesion between the wire and electroplated metal, a three-point bending test was conducted to compare stiffness, field strength, and ultimate strength among four wire groups; 0.016 inch, electroplated 016, electroplated and heat-treated 016, and 0.018 inch wires. Through the comparison of each wire group, following results were obtained. 1. In the load-deflection graph, the curve of the electroplated group was Placed between that of the 0.016 inch group and the 0.018 inch group, and the owe was closer to the 0.018 inch group by heat treatment. 2. In the electroplated and heat-treated 016 wire group, the values of stiffness, yield strength and ultimate strength showed higher tendency than in the original 0.016 Inch group. Stiffness and ultimate strength showed statistically significant differences between two groups. 3. Stiffness, yield strength, and ultimate strength of electroplated wire presented lower values than those of 0.018 inch wire group. 4. Stiffness, yield strength, and ultimate strength of electroplated and heat-treated wire showed higher tendency than those of electroplated wire group, and ultimate strength showed statistically significant difference between two groups. 5. After electroplating, the difference in diameter between the three locations was within $0.1\~0.3\%$ variation, and showed no statistical significance.

A FEM study on stress distribution of tooth-supported and implant-supported overdentures retained by telescopic crowns (텔레스코픽 크라운 임플란트 지지 피개의치와 치아 지지 피개의치의 하악골내 응력분포에 관한 유한요소분석)

  • Paek, Jang-Hyun;Lee, Chang-Gyu;Kim, Tae-Hun;Kim, Min-Jung;Kim, Hyeong-Seob;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.10-20
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant-supported overdentures and tooth-supported overdentures with telescopic crowns. Materials and methods: The assumption of this study was that there were 2, 3, 4 natural teeth and implants which are located in the second premolar and canine regions in various distributed conditions. The mandible, teeth (or implants and abutments), and connectors are modeled, and analyzed with the commercial software, ANSYS Version 10.1. Stress distribution was evaluated under 150 N vertical load bilaterally on 3 experimental conditions - between canine areas, canine and $2^{nd}$ premolars, 10 mm posterior to $2^{nd}$ premolars. Results: Overall, the case of the implant group showed more stress than the case of the teeth group in stress distribution to bone. In stress distribution to superstructures of tooth and implants, there was no significant difference between TH group and IM group and the highest stress appeared in TH-IV and IM-IV. The stress caused from bar was much higher than those of implant and tooth. TH group showed less stress than IM group in stress distribution to abutment teeth and implant. Conclusion: The results shows that it is crucial to make sure that distance between impact loading point and abutment tooth does not get too far apart, and if it does, it is at best to set abutment tooth on premolar tooth region. It will be necessary to conduct more experiments on effects on implants, natural teeth and bone, in order to apply these results to a clinical treatment.

Erosion Control Effect by Soil ansi Vegetation Transition in Mountainous Area after Soil Erosion Measures were Initiated (토양 및 식생변화에 따른 토지 사방 공사의 효과에 관한 연구)

  • 이천용
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.2
    • /
    • pp.7-16
    • /
    • 1986
  • This study was carried out to investigate the effects of such erosion control measures as sowing, planting and small earth structures on the soil and vegetation. In order to study the changes in soil and vegetation, 36 plots were surveyed from 1981 to 1982 in the large erosion control area which is restored last 20 years. The factors which were measured included vegetation coverage, tree growth, number of species, soil depth, soil consistancy, and Chemical properties of soil. The results were as follows; 1) Maximum coverage of the overstory and understory was attained 7 years after the initiation of erosion control. So the overstory need to be tended and pruned. 2) Diversity of species increased until age 6 after which it began to decrease. 3) In order of tree growth, black locust was the fastest, followed by siberian alder and pitch pine. The initial growth of black locust, though the best among the 3 tree stop., decreased rapidly year by year. At the same time, siberian alder and pitch pine grew well until 12 and 6 years after the initiation of erosion control respectively. 4) Fifty percent of the initially planted trees died within 8 yeard. The mortality of siberian alder occurred until the 20th year while the mortality of pitch pine stopped after 10 years. Thereafter 500 trees per hectare were maintained. 5) The soil depth in A and B horision increased by 2cm annually during 20 years. The soil consistency also decreased rapidly until 7th year. The physical soil properties of the rehabilitated areas were improved after the 14th year. 6) The soil pH tend to decrease from 5.3 during the first year to 5.1 during the twentieth year. 7) The organic matter and nitrogen content in the soil were increased by fertilization but after 20 years these nutrients are still deficient for normal tree growth. 8) The phosphorous content in the soil was high in the first year but the longer the period after the initiation of erosion control the lese the content of phosphorous. 9) The biomass of black locust was the highest and increased continuously. The biomass of siberian alder on the contrary decreased from the 15th year because the number of trees in this place was very low. The total biomass in the twentieth year after erosion control initiation was 105.7 ton per hectare.

  • PDF

Early Failure of Cortical-Bone Screw Fixation in the Lumbar Spinal Stenosis (요추부 협착에서의 피질골 궤도 나사못 고정의 초기 실패 사례에 대한 고찰)

  • Kwon, Ji-Won;Kim, Jin-Gyu;Ha, Joong-Won;Moon, Seong-Hwan;Lee, Hwan-Mo;Park, Yung
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • Purpose: Pedicle screw insertion has been traditionally used as a surgical treatment for degenerative lumbar spine disease. As an alternative, the cortical-bone trajectory screw allows less invasive posterior lumbar fixation and excellent mechanical stability, as reported in several biomechanical studies. This study evaluated the clinical and radiological results of a case of early failure of cortical-bone screw fixation in posterior fixation and union after posterior decompression. Materials and Methods: This study examined 311 patients who underwent surgical treatment from 2013 to 2018 using cortical orbital screws as an alternative to traditional pedicle screw fixation for degenerative spinal stenosis and anterior spine dislocation of the lumbar spine. Early fixation failure after surgery was defined as fixation failure, such as loosening, pull-out, and breakage of the screw on computed tomography (CT) and radiographs at a follow-up of six months. Results: Early fixation failure occurred in 46 out of 311 cases (14.8%), screw loosening in 46 cases (14.8%), pull-out in 12 cases (3.9%), and breakage in four cases (1.3%). An analysis of the site where the fixation failure occurred revealed the following, L1 in seven cases (15.2%), L2 in three cases (6.5%), L3 in four cases (8.7%), L4 in four cases (8.7%), L5 in four cases (8.7%), and S1 in 24 cases (52.2%). Among the distal cortical bone screws, fixation failures such as loosening, pull-out, and breakage occurred mainly in the S1 screws. Conclusion: Cortical-bone trajectory screw fixation may be an alternative with comparable clinical outcomes or fewer complications compared to conventional pedicle screw fixation. On the other hand, in case with osteoporosis and no anterior support structure particularly at L5-S1 fusion sites were observed to have result of premature fixation failures such as relaxation, pull-out, and breakage.

Monitoring and Preventive Preservation of Cultural Heritages to Maintain Original Wooden Architectural Cultural Heritage (목조건축문화재 원형유지를 위한 문화재돌봄 모니터링과 예방보존)

  • CHUN Kyoungmee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.192-214
    • /
    • 2023
  • Wooden architectural cultural heritages are one of the visible legacies that show the national's identity. Even when the concept of 'the original' of cultural heritages was not accurately understood, the emphasis of preservation and management of cultural heritages was placed on 'preservation of the original form' or 'maintenance of the original form'. Moreover, these days, following the trend of international preservation principles, cultural heritages are considered important as "values as historical objects." This paper is the result of an attempt to determine the scope and content of what parts should be monitored to maintain the original form of wooden architectural cultural heritage. The first thing to be done in monitoring wooden architectural cultural heritage is to check the condition of the ground and foundation. The second is the column. This is because the instability of the column causes damage to the joint with each member and the fitting part, resulting in physical changes leading to damage to the wall. The third is monitor the roof tiles. If the leak continues into the building due to the separation or damage of the roof, the defect should be partially dismantled and repaired, so it should be monitored to maintain its original shape as much as possible. The monitoring range of the base, column, and roof serves as a reference point for identifying what damage is being done to the relevant cultural heritages. In other words, the data at the time when monitoring began becomes the 'original' for the year. Alternatives based on the analysis of monitoring for the preservation of original cultural heritages should be actively introduced. In addition, by sharing the current state and situation of cultural heritages as a result of monitoring with various related organizations, preventive preservation should be established rather than preservation of cultural heritages by "intervention."

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF

Effects of Boliing, Steaming, and Chemical Treatment on Solid Wood Bending of Quercus acutissima Carr. and Pinus densiflora S. et. Z. (자비(煮沸), 증자(蒸煮) 및 약제처리(藥劑處理)가 상수리나무와 소나무의 휨가공성(加工性)에 미치는 영향(影響))

  • So, Won-Tek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-62
    • /
    • 1985
  • This study was performed to investigate: (i) the bending processing properties of silk worm oak (Quercus acutissima Carr.) and Korean red pine (Pinus densiflora S. et Z.) by boiling and steaming treatments; (ii) the effects of interrelated factors - sapwood and heartwood, annual ring placement, softening temperature and time, moisture content. and wood defects on bending processing properties; (iii) the changing rates of bending radii after release from a tension strap, and (iv) the improving methods of bending process by treatment with chemicals. The size of specimens tested was $15{\times}15{\times}350mm$ for boiling and steaming treatments and $5{\times}10{\times}200mm$ for treatments with chemicals. The specimens were green for boiling treatments and dried to 15 percent for steaming treatments. The specimens for treatments with chemicals were soaked in saturated urea solution, 35 percent formaldehyde solution, 25 percent polyethylene glycol -400 solution, and 25 percent ammonium hydroxide solution for 5 days and immediately followed the bending process, respectively. The results obtained were as follows: 1. The internal temperature of silk worm oak and Korean red pine by boiling and steaming time was raised slowly to $30^{\circ}C$ but rapidly from $30^{\circ}C$ to $80-90^{\circ}C$ and then slowly from $80-90^{\circ}C$ to $100^{\circ}C$. 2. The softening time required to the final temperature was directly proportional to the thickness of specimen. The time required from $25^{\circ}C$ to $100^{\circ}C$ for 15mm-squared specimen was 9.6-11.2 minutes in silk worm oak and 7.6-8.1 minutes in Korean red pine. 3. The moisture content (M.C.) of specimen by steaming time was increased rapidly first 4 minutes in the both species, and moderately from 4 to 20 minutes and then slowly and constantly in silk worm oak, and moderately from 4 to 15 minutes and then slowly and constantly in Korean red pine. The M.C. of 15mm-squared specimen in 50 minutes of steaming was increased to 18.0 percent in the oak and 22.4 percent in the pine from the initial conditioned M.C. of 15 percent The rate of moisture adsorption measured was therefore faster in the pine than in the oak. 4. The mechanical properties of the both species were decreased significantly with the increase of boiling rime. The decrement by the boiling treatment for 60 minutes was measured to 36.6-45.0 percent in compressive strength, 12.5-17.5 percent in tensile strength, 31.6-40.9 percent in modulus of rupture, and 23.3-34.6 percent in modulus of elasticity. 5. The minimum bending radius (M.B.R.) of sapwood and heartwood was 60-80 mm and 90 mm in silk worm oak, and 260 - 300 mm and 280 - 300 mm in Korean red pine, respectively. Therefore, the both species showed better bending processing properties in sapwood than in heartwood. 6. The M.B.R. of edge-grained and flat-grained specimen in suk worm oak was 60-80 mm, but the M.B.R. in Korean red pine was 240-280 mm and 260-360 mm, respectively. Comparing the M.B.R. of edge-grained with flat-grained specimen, in the pine the edge-grained showed better bending processing property than the flat-grained. 7. The bending processing properties of the both species were improved by the rising of softening temperature from $40^{\circ}C$ to $100^{\circ}C$. The minimum softening temperature for bending was $90^{\circ}C$ in silk worm oak and $80^{\circ}C$ in Korean red pine, and the dependency of softening temperature for bending was therefore higher in the oak than in the pine. 8. The bending processing properties of the both species were improved by the increase of softening time as well as temperature, but even after the internal temperature of specimen reaching to the final temperature, somewhat prolonged softening was required to obtain the best plastic conditions. The minimum softening time for bending of 15 mm-squared silk worm oak and Korean red pine specimen was 15 and 10 minutes in the boiling treatment, and 30 and 20 minutes in the steaming treatment, respectively. 9. The optimum M.C. for bending of silk worm oak was 20 percent, and the M.C. above fiber saturation point rather degraded the bending processing property, whereas the optimum M.C. of Korean red pine needed to be above 30 percent. 10. The bending works in the optimum conditions obtained as seen in Table 24 showed that the M.B.R. of silk worm oak and Korean red pine was 80 mm and 240 mm in the boiling treatment, and 50 mm and 280 mm in the steaming treatment, respectively. Therefore, the bending processing property of the oak was better in the steaming than in the boiling treatment, but that of the pine better in the boiling than in the steaming treatment. 11. In the bending without a tension strap, the radio r/t of the minimum bending radius t to the thickness t of silk worm oak and Korean red pine specimen amounted to 16.0 and 21.3 in the boiling treatment, and 17.3 and 24.0 in the steaming treatment, respectively. But in the bending with a tension strap, the r/t of the oak and the pine specimen decreased to 5.3 and 16.0 in t he boiling treatment, and 3.3 and 18.7 in the steaming treatment, respectively. Therefore, the bending processing properties of the both species were significantly improved by the strap. 12. The effect of pin knot on the degradation of bending processing property was very severe in silk worm oak by side, e.g. 90 percent of the oak specimens with pin knot on the concave side were ruptured when bent to a 100 mm radius but only 10 percent of the other specimens with pin knot on the convex side were ruptured. 13. The changing rate in the bending radius of specimen bent to a 300 mm radius after 30 days of exposure to room temperature conditions was measured to 4.0-10.3 percent in the boiling treatment and 13,0-15.0 percent in the steaming treatment. Therefore, the degree of spring back after release was higher in the steaming than in the boiling treatment. And the changing rate of moisture-proofing treated specimen by expoxy resin coating was only -1.0.0 percent. 14. Formaldehyde, 35 percent solution, and 25 percent polyethylene glycol-400 solution found no effect on the plasticization of the both species, but saturated urea solution and 25 percent ammonium hydroxide solution found significant effect in comparison to non-treated specimen. But the effect of the treatment with chemicals alone was inferior to that of the steaming treatment, and the steaming treatment after the treatment with chemicals improved 10-24 percent over the bending processing property of steam-bent specimen. 15. Three plasticity coefficients - load-strain coefficient, strain coefficient, and energy coefficient - were evaluated to be appropriate for the index of bending processing property because the coefficients had highly significant correlation with the bending radius. The fitness of the coefficients as the index was good at load-strain coefficient, energy coefficient, and strain coefficient, in order.

  • PDF