• Title/Summary/Keyword: 점착 응력

Search Result 119, Processing Time 0.03 seconds

A Study on the Liquefaction Behavior of Soil in Jangbogo Station (남극 장보고기지 현장시료의 액상화거동 특성 연구)

  • Park, Keunbo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In this study, in order to take advantage of samples collected in the Jangbogo station, and to grasp the liquefaction resistance characteristics of the dynamic load was performed cyclic triaxial test. Also, through the comparison with the existing literature. The test results, for the relationship between number of cycles for the same cyclic shear stress ratio and the cyclic shear stress ratio to produce an axial strain of 5%, in all samples, the cyclic shear stress ratio to liquefaction for the specimen, which has been liquefied, was increased, whereas number of cycles were reduced. The cyclic shear stress ratio of samples first decrease up to the fine content of about 10%. After this strength level, there is a little increase in cyclic shear stress ratio with increasing fine content. In addition, the cyclic shear stress ratio between cohesive strength, mean particle size, and friction angle decrease but some time later, there was a tendency that cyclic shear stress ratio is a little increased.

Physical Characteristics of Floc Density of Suspended Fine Particles in accordance with the Cohesiveness (점착성에 따른 부유 미립자의 플럭밀도에 대한 물리적 특성)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • This paper was examined the physical characteristics of floc density of suspended fine particles with varying cohesiveness. The analysis of floc density was performed in a small annular flume with a free water surface under different bed shear stresses and ion addition. Fine-grained silica was used as model material, as it is the main mineral components of clay that affects sedimentation. It was concluded that floc density depended on increasing the bed shear stress, the salinity and pH value. Floc density decreased with increasing the salinity in still water and floc size, whereas the opposite was true when increasing the bed shear stress. Also, it increased at pH6.8 more than at pH4.2 when increasing the bed shear stress in the range from 0.0086 to $0.0132N/m^2$.

Calculation of the safe mode of embankment erection on the consolidated basis (압밀기반에서 안전한 상태의 제방건축 산출)

  • Song, Young-Woong;Alexander, Mikhailovich
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.656-663
    • /
    • 2010
  • 본 연구에서는 K.Terzaghi의 유효응력이론을 인용하여 압밀기반의 안전하중 산출 과정과 결과를 제시하였다. 일반적인 강도를 평가하기 위하여 이용된 J.I.Solovyov의 순간강도 이론에 기초를 두어, 제시한 방법은 포화된 연약점토지반에서 도로의 유지보수 뿐 아니라 축조 과정에 안전하중의 계산 적용이 가능하다. 실제로 편리한 표준 압밀 drain test에서 정의된 점착력, 내부 마찰각과 같은 강도정수를 가진 유효응력은 실제적 적용을 고려하기 위하여 산출된다.

  • PDF

The Influence of Pre-compression on the Shear Characteristics of Cohesive Soil (선행압축(先行壓縮)이 점성토(粘性土)의 전단특성(剪斷特性)에 미치는 영향(影響))

  • Kang, Yea Mook;Park, Heon Young
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.277-291
    • /
    • 1983
  • In order to investigate the shear characteristics of earth structure after construction. Four sample soils with different gradation were selected and compacted under the optimum moisture content and the maximum dry density. And the direct shear test and the triaxial compression test were performed with those sample soils under various pre-compression loads. The results were summarized as follows; 1. With the increase of the percent passing of No. 200 sieve, the cohesion of soil increased regularly and the internal friction angle of soil decreased with slow ratio. 2. The pre-compression increased the shear strength of compacted cohesive soil. The increase of cohesion was very apparent but the internal friction angle didn't show such regular tendency. 3. With the increase of pre-compression load, the slope of stress-strain curve showed steep at the early stage of horizontal strain. The vertical strain was small at the compression stage and big at the expansion stage. 4. When the vertical stress of shear test with increase in the horizontal strain was small, stress ratio(shear stress vs. vertical stress) of sample showed the largest value and the slope of stress ratio curve showed also steep. 5. When the sample was had the same condition, the cohesion of soil showed bigger value in the triaxial compression test and the internal friction angle of soil showed bigger value in the direct shear test.

  • PDF

Design of Laminar Flow Chamber Apparatus for Endothelial Cell Physiology Study (혈관내피세포의 생리적 반응 연구를 위한 평판형 층류발생장치의 설계)

  • 장준근
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.94-98
    • /
    • 1998
  • 혈관내피세포는 혈관의 내벽에 단일 층을 구성하고 있는 상피세포로 동맥경화나 혈관협착의 원인에 매우 중요한 역할을 하는 것으로 알려져 있다. 그리고, 모든 혈관 질환의 발생장소가 혈관이 나뉘는 분지부에 집중되고 있어, 혈류역학과 혈관질환 간에 상호연관성이 있음을 짐작할 수 있다. 특히, 최근에 와서 혈관내피세포가 혈액유동에 의해 발생하는 전단응력을 인지하여 혈관의 제반 생리적 반응을 조절한다는 연구결과가 속속 발표되고 있어, 혈관질환의 극복을 위한 연구 개발에 혈관내피세포에 대한 이해의 중요성이 증대되고 있다. 이에 본 연구에서는 혈관내피세포에 혈류와 같은 크기의 전단응력을 부가하여 세포의 생리적 반응을 고찰할 수 있는 평판형 층류발생장치를 설계, 제작하였다. 설계된 평판형 층류발생장치는 유동환경 하에서의 혈관내피세포의 동적반응을 고찰 할 수 있도록 유동액의 온도, 산도, 전단응력의 크기를 조절할 수 있도록 설계하였으며, 제작된 실험장치를 이용하여 전단응력에 의한 혈관내피세포의 형태변화를 고찰하였다. 개발된 층류발생장치는 혈관내피세포의 연구 뿐 아니라, 백혈구의 점착, 암세포의 전이등에도 다양하게 활용이 가능하다.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

The Quantitative Estimation of Erosion Rate Parameters for Cohesive Sediments from Keum Estuary (금강 하구역 점착성 퇴적물에 대한 침식률 매개변수의 정량적 산정)

  • Ryu, Hong-Ryul;Lee, Hyun-Seung;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.283-293
    • /
    • 2006
  • The purpose of this study is to quantitatively estimate the erosional properties for cohesive sediments on Keum Estuary. Then the spatial variation was evaluated, through analyzing and comparing the seasonal variation of the erosional properties in Keum Estuary with that of the erosional properties in the other sites. As erosional properties of cohesive sediments are also influenced largely by basic physico-chemical property of cohesive sediments themselves, the impact that the basic physico-chemical property has on the erosional properties is analyzed in this study. Erosional tests are performed under the condition of uniform beds. Total 8 times of tests using an annular flume are also conducted in a location, low times respectively by seasons: the fall, winter. Experimental results of erosional tests show that the critical shear stress for erosion varies in the range of $0.12{\sim}0.36N/m^2$ and the coefficient of erosion rate varies in the range of $120.91{\sim}6.72mg/cm^2{\cdot}hr$, over the corresponding bulk-density range $1.15{\sim}1.34g/cm^3$. Although the calculated parameters of erosional properties are remarkably different in quantity compared with those of other cohesive sediments(lake Okeechobee) and Kaolinite, their seasonal variabilities within Keum Estuary appear to be insignificant.

Analysis on Erosional Properties of Fine-Cohesive Sediments In Kunsan Coast (군산해역 미세-점착성 퇴적물의 침식특성 해석)

  • 이현승;조용준;황규남
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.222-226
    • /
    • 2003
  • 대부분의 경우에 하구의 미세-점착성 퇴적물은 보통 무기성 광물과 유기물 및 생화학물의 혼합체이며, 광물 입자들은 주로 점토와 실트로 구성되어 있다. 이러한 혼합체의 침식특성은 사질성 퇴적물과는 달리 입자간의 응집현상에 의한 의해 크게 영향을 받으며, 응집강도는 광물질 구성, 입경분포, 유기물 함량 등으로 묘사되는 퇴적물 자체의 물리ㆍ화학적 기본특성에 따라 크게 변화하고 (Mea, 1986), 특히 저면 퇴적물의 침식 여부는 흐름 전단응력에 의한 저면퇴적물의 저항력 즉, 저면전단강도의 상대적 크기의 차이에 좌우되므로, 그 침식 특성은 저면전단강도 흑은 저면밀도로 묘사되는 저면특성에 따라 크게 변화한다(황규남 등, 2003). 또한 각 해역마다 저면 퇴적물은 퇴적물 공급원, 수동학적 조건, 생태학적 조건 등이 모두 다른 상태에서 형성된 퇴적층이므로, 저면 퇴적물의 기본특성 및 저면특성은 "site- specific" 한 성격을 갖는다. (중략)

  • PDF

A Numerical Model for Cohesive Suspended Load Movement (점착성 부유사 이동에 관한 수치모형)

  • 안수한;이상화
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.119-127
    • /
    • 1990
  • The concentration of cohesive suspended sediment is determined by the circulation of water and the material dispersion. The equations of the two-dimensional, depth-integrated dispersive transport are the Reynolds equation, continuity equation, and advection-dispersion equation based on the Fick's law. A finite difference method has been applied to two models of circulation and dispersion transport. The circulation model is solved by the explicit scheme and the dispersion transport model is solved by multi-operational scheme. It is investigated wheter advective terms are included when the equation of circulation is applied to the model. For advection-dispersion equation, it was also investigated about variations of suspended sediment concentration with respect to the critical shear stresses.

  • PDF