• 제목/요약/키워드: 점진 학습

검색결과 176건 처리시간 0.031초

챗봇 프레임워크 성능 향상을 위한 점진적 학습 기법 (Incremental Learning for Performance Enhancement of Chatbot Framework)

  • 박상현;박진욱;조수헌;현제혁;황진성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.283-284
    • /
    • 2019
  • 규칙 기반의 챗봇(Chatbot)은 개발자가 미리 지정한 키워드와 패턴을 통해 사용자의 의도(Intent)를 파악하기 때문에, 챗봇을 응용한 어플리케이션에서는 제한적인 활용도를 보인다. 본 논문에서는 위 문제를 해결하기 위해, 프레임워크 기반의 한글 자연어 처리 챗봇 성능 향상을 위한 점진 학습(Incremental Learning)을 제안한다. DialogFlow는 규칙 기반의 챗봇 프레임워크로서, 사용자 질의 패턴에 대한 사전 학습이 치명적이다. 제안하는 점진 학습 기법은 사용자 질의가 미리 학습되어 있지 않은 경우에도, 유사도 기반으로 질의의 의도를 결정할 수 있다. 이때 entity 조합과 기존에 학습된 질의들과의 유사도를 통해 의도를 결정하여, 프레임워크를 점진적으로 학습한다. 이를 적용하여 연세대학교 정보들을 제공하는 챗봇을 개발하고, 실험을 통해 제안된 점진 학습 기법은 기존 시스템보다 다양한 종류의 질의 처리가 가능하고, 더욱 빠른 응답 속도를 나타내는 것을 확인하였다. 또한 사용자가 증가함에 따라 점진 학습을 통해 성능이 더욱 증가하는 자가 학습 모형으로서의 우수함을 확인하였다.

  • PDF

메모리 기반 추론 기법에 기반한 점진적 다분할평균 알고리즘 (An Incremental Multi Partition Averaging Algorithm Based on Memory Based Reasoning)

  • 이형일
    • 전기전자학회논문지
    • /
    • 제12권1호
    • /
    • pp.65-74
    • /
    • 2008
  • 패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장하고 분류 시에 저장된 패턴과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하는 기법이기 때문에 패턴의 개수가 늘어나면 메모리가 증가하고 또한 추가로 패턴이 발생할 경우 처음부터 다시 수행해야하는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 이미 학습한 대표패턴을 기억하고 새로 들어오는 패턴에 대해서만 학습하는 점진적 학습 방법을 제안한다. 즉 추가로 학습패턴이 발생할 경우 매번 전체 학습 패턴을 다시 학습하는 것이 아니라, 새로 추가된 데이터만을 학습하여 대표패턴을 추출하여 메모리사용을 줄이는 iMPA(incremental Multi Partition Averaging)기법을 제안하였다. 본 논문에서 제안한 기법은 대표적인 메모리기반 추론 기법인 k-NN 기법과 비교하여 현저하게 줄어든 대표패턴으로 유사한 분류 성능을 보여주며, 점진적 특성을 지닌 NGE 이론을 구현한 EACH 시스템과 점진적인 실험에서도 탁월한 분류 성능을 보여준다.

  • PDF

점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘 (Online anomaly detection algorithm based on deep support vector data description using incremental centroid update)

  • 이기배;고건혁;이종현
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.199-209
    • /
    • 2022
  • 일반적인 비정상 탐지 알고리즘은 사전 데이터를 이용하여 학습된다. 따라서 시간에 따른 정상 데이터의 특징이 변화되는 경우에 기존의 배치 학습 기반 알고리즘의 성능 저하가 불가피하다. 본 논문에서는 정상 데이터의 점진적 특징 변화를 고려할 수 있는 온라인 비정상 탐지 알고리즘을 제안한다. 제안하는 알고리즘은 단일 클래스 분류 모델에 기반하며 오프라인 및 온라인 단계의 학습 과정을 포함한다. 제안된 알고리즘의 오프라인 학습 단계에서는 사전 데이터가 잠재 공간의 중심에 근접하도록 학습하고, 이후 온라인 학습단계에서는 신규 데이터에 의한 점진적 잠재 공간의 중심을 갱신하고, 갱신된 중심을 기준으로 계속 학습을 진행한다. 공개된 수중 음향 데이터를 이용한 실험결과 제안된 온라인 비정상 탐지 알고리즘은 점진적 중심 갱신 및 학습을 위해 단지 2 % 정도의 추가 학습시간이 소요되는 것으로 확인되었다. 반면에 시변 정상데이터가 수신되는 경우에 오프라인 학습 모델과 비교하여 19.10 % 개선된 Area Under the receiver operating characteristic Curve(AUC) 성능을 보였다.

U-learning 환경의 대용량 학습문서 판리를 위한 효율적인 점진적 문서 (An Effective Increment리 Content Clustering Method for the Large Documents in U-learning Environment)

  • 주길홍;최진탁
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권9호
    • /
    • pp.859-872
    • /
    • 2004
  • 컴퓨터와 통신 기술이 발전함에 따라 최근의 교육 환경은 학습자 스스로 학습 내용, 학습 시간 및 학습 순서를 선택하고 조직하는 유비쿼터스 학습 방향으로 나아가고 있다. 방대한 양의 학습정보들은 대부분 문서 형태로 관리되고 있기 때문에 문서 단위로 표현된 많은 정도들을 효과적으로 관리하고 검색하기 위한 방법의 연구가 필요하게 되었다. 문서 클러스터링은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 문서틀을 주제별로 통합하는 방법으로 대용량의 문서들을 자통으로 분류하고, 검색하는 데 있어서 검색의 정확성을 증대시킬 수 있다. 따라서 본 논문에서는 새로운 학습 문서의 추가나 기존문서의 삭제로 인하여 군집화 대상이 되는 학습 문서 집합이 점진적으로 변화하는 환경을 위한 점진적 문서 클러스터링 알고리즘을 제안한다. 점진적 문서 클러스터링 알고리즘은 새로운 문서가 추가되었을 경우 문서 전체를 다시 클러스터링하지 않고. 이미 생성된 클러스터들의 구조를 적응적으로 변화시킴으로써 높은 효율성을 제공할 수 있다. 또한, 문서 글러스터링의 정확도극 높이기 위하여 통계적인 기법으로 불용어를 판별하여 제거하는 알고리즘을 제안한다.

  • PDF

사용자의 행동과 점진적 기계학습을 이용한 쓰레기 편지 여과 시스템의 설계 (Designing a Spam Mail Filtering System Using User Reaction and Incremental Machine Learning)

  • 김강민;박은진;김재훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.775-778
    • /
    • 2005
  • 본 논문은 쓰레기 편지를 여과하기 위해 대상 편지에 따른 사용자들의 행동(reaction)을 묵시적(implicitly)으로 수집한 후 이를 점진적(incrementally) 기계학습기의 자질(feature)로 사용하여 편지 여과 작업의 증거가 되는 단어들을 지속적으로 학습하면서 최적의 편지 여과 결과를 제공하는 기법과 시스템 구조를 제안한다. 사용자 개인의 컴퓨터에 행동 정보와 학습 데이터를 저장하도록 설계하여 묵시적 정보 수집에서 자주 제기되는 개인 프라이버시 문제를 해결하였으며, 점진적 기계학습 기법을 사용하여 개인 정보를 포함하는 대량의 편지 학습 데이터를 모으기 힘들다는 문제를 해결하였다. 또 향후 제안하는 시스템을 이용하여 여러 종류의 기계학습 기법 중 쓰레기 편지 여과 작업을 가장 효과적으로 수행할 수 있는 기법을 선택하는 작업을 수행할 계획이다.

  • PDF

강화학습에서 점진적인 심화를 이용한 고누게임의 개선 (Improvement of the Gonu game using progressive deepening in reinforcement learning)

  • 신용우
    • 한국게임학회 논문지
    • /
    • 제20권6호
    • /
    • pp.23-30
    • /
    • 2020
  • 게임에서는 많은 경우의 수들을 가지고 있다. 그래서 학습을 많이 하여야 한다. 본 논문은 학습속도를 개선하기 위하여 강화학습을 이용했다. 그러나 강화학습은 많은 경우의 수들을 가지므로 학습 초기에 속도가 느려진다. 그래서 미니맥스 알고리즘을 이용하여 학습의 속도를 향상하였다. 개선된 성능을 비교하기 위해 고누게임을 제작하여 실험하였다. 실험결과는 승률은 높았지만, 동점의 결과가 발생하게 되었다. 점진적인 심화를 이용하여 게임트리를 더 탐색하여 동점인 경우를 줄이고 승률이 약 75% 향상되었다.

재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘 (An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.11-17
    • /
    • 2007
  • 패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장된 학습패턴 또는 초월평면과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 이 문제를 해결하기 위하여, 메모리 기반 학습 기법인 RPA를 기반으로 학습패턴들에 내재된 규칙성을 표현하는 IF-THEN 형태의 규칙을 생성하는 점진적 학습 알고리즘을 제안하였다. 하지만, RPA에 의해 생성된 규칙은 주어진 학습패턴 집합에만 충실히 학습되어 overfitting 현상을 보이게 되며, 또한 패턴 공간의 과도한 분할로 인하여 필요 이상으로 많은 개수의 규칙이 생성된다. 따라서, 본 논문에서는 생성된 규칙으로부터 불필요한 조건을 제거함으로써 ovefitting 현상을 해결함과 동시에 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안하였으며, UCI Machine Learning Repository의 벤치마크 데이터를 이용하여 제안한 알고리즘의 성능을 입증하였다.

점진적 학습 기반 모아 콘텐츠 큐레이션 서비스 시스템 설계 (Design of Moa Contents Curation Service System Based on Incremental Learning Technology)

  • 이정원;민병원;오용선
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2018
  • 콘텐츠 큐레이션 서비스를 위해서 대용량 데이터를 학습하는 과정에서 발생하는 메모리부족 문제, 학습소요시간 문제 등을 해결하기 위한 "대용량 문서학습을 위한 동적학습 파이프라인 생성기술 중 빅데이터 마이닝을 위한 점진적 학습 모델" 기술이 필요하며, 본 논문에서 제안한 콘텐츠 큐레이션 서비스는 온라인상의 수많은 콘텐츠들 중 개인의 주관이나 관점에 따라 관련 콘텐츠들을 수집, 정리하고 편집하여 이용자와 관련이 있거나 좋아할 만한 콘텐츠를 제공하는 서비스이다. 본 논문에서 설계된 모아 큐레이션 서비스는 대용량의 문서를 학습함에 있어서 메모리 부족 문제, 학습 소요시간 문제 등을 해결하기 위해 학습데이터의 용량 제한이 없는 문서를 자유롭게 학습하고 부분적인 자질추가/변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법 등을 제시하였다.

  • PDF

점진적 학습 기술 기반 범용적인 분류기 구조설계 방법의 설계 및 구현 (Design and Implementation of a Generic Classification System Based on Incremental Learning Technology)

  • 민병원;오용선
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2019년도 춘계종합학술대회
    • /
    • pp.425-426
    • /
    • 2019
  • 전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.

  • PDF

유아 언어학습에 대한 하이퍼망 메모리 기반 모델 (Hypernetwork Memory-Based Model for Infant's Language Learning)

  • 이지훈;이은석;장병탁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.983-987
    • /
    • 2009
  • 유아들의 언어습득에 있어서 중요한 점 하나는 학습자에 대한 언어환경의 노출이다. 유아가 접하는 언어환경은 부모와 같은 인간뿐만 아니라 각종 미디어와 같은 인공적 환경도 포함되며, 유아는 이러한 방대한 언어환경을 탐색하면서 언어를 학습한다. 본 연구는 대용량의 언어 데이터 노출이 영향을 미치는 유아언어학습을 유연하고 적절하게 모사하는 인지적 기제에 따른 기계학습 방식을 제안한다. 유아의 초기 언어학습은 문장수준의 학습과 생성 같은 행동들이 수반되는데, 이는 언어 코퍼스에 대한 노출만으로 모사가 가능하다. 모사의 핵심은 언어 하이퍼망 구조를 가진 기억기반 학습모델이다. 언어 하이퍼망은 언어구성 요소들 간의 상위차원 관계 표상을 가능케 함으로써 새로운 데이터 스트림에 대해 유사구조의 적용과 이용을 도모하여 발달적이고 점진적인 학습을 모사한다. 본 연구에서는 11 개의 유아용 비디오로부터 추출한 문장 32744개를 언어 하이퍼망을 통한 점진적 학습을 수행하여 문장을 생성해 유아의 점진적, 발달적 학습을 모사하였다.