• Title/Summary/Keyword: 점진 학습

Search Result 176, Processing Time 0.03 seconds

Incremental Learning for Performance Enhancement of Chatbot Framework (챗봇 프레임워크 성능 향상을 위한 점진적 학습 기법)

  • Park, Sanghyun;Park, Jinuk;Joe, Soohun;Hyun, Jehyeok;Hwang, Jinseong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.283-284
    • /
    • 2019
  • 규칙 기반의 챗봇(Chatbot)은 개발자가 미리 지정한 키워드와 패턴을 통해 사용자의 의도(Intent)를 파악하기 때문에, 챗봇을 응용한 어플리케이션에서는 제한적인 활용도를 보인다. 본 논문에서는 위 문제를 해결하기 위해, 프레임워크 기반의 한글 자연어 처리 챗봇 성능 향상을 위한 점진 학습(Incremental Learning)을 제안한다. DialogFlow는 규칙 기반의 챗봇 프레임워크로서, 사용자 질의 패턴에 대한 사전 학습이 치명적이다. 제안하는 점진 학습 기법은 사용자 질의가 미리 학습되어 있지 않은 경우에도, 유사도 기반으로 질의의 의도를 결정할 수 있다. 이때 entity 조합과 기존에 학습된 질의들과의 유사도를 통해 의도를 결정하여, 프레임워크를 점진적으로 학습한다. 이를 적용하여 연세대학교 정보들을 제공하는 챗봇을 개발하고, 실험을 통해 제안된 점진 학습 기법은 기존 시스템보다 다양한 종류의 질의 처리가 가능하고, 더욱 빠른 응답 속도를 나타내는 것을 확인하였다. 또한 사용자가 증가함에 따라 점진 학습을 통해 성능이 더욱 증가하는 자가 학습 모형으로서의 우수함을 확인하였다.

  • PDF

An Incremental Multi Partition Averaging Algorithm Based on Memory Based Reasoning (메모리 기반 추론 기법에 기반한 점진적 다분할평균 알고리즘)

  • Yih, Hyeong-Il
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it is notorious for memory usage and can't learn additional information from new data. In order to overcome this problem, we propose an incremental learning algorithm (iMPA). iMPA divides the entire pattern space into fixed number partitions, and generates representatives from each partition. Also, due to the fact that it can not learn additional information from new data, we present iMPA which can learn additional information from new data and not require access to the original data, used to train. Proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory using benchmark data sets from UCI Machine Learning Repository.

  • PDF

Online anomaly detection algorithm based on deep support vector data description using incremental centroid update (점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘)

  • Lee, Kibae;Ko, Guhn Hyeok;Lee, Chong Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.199-209
    • /
    • 2022
  • Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.

An Effective Increment리 Content Clustering Method for the Large Documents in U-learning Environment (U-learning 환경의 대용량 학습문서 판리를 위한 효율적인 점진적 문서)

  • Joo, Kil-Hong;Choi, Jin-Tak
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.859-872
    • /
    • 2004
  • With the rapid advance of computer and communication techonology, the recent trend of education environment is edveloping in the ubiquitous learning (u-learning) direction that learners select and organize the contents, time and order of learning by themselves. Since the amount of education information through the internet is increasing rapidly and it is managed in document in an effective way is necessary. The document clustering is integrated documents to subject by classifying a set of documents through their similarity among them. Accordingly, the document clustering can be used in exploring and searching a document and it can increased accuracy of search. This paper proposes an efficient incremental clustering method for a set of documents increase gradually. The incremental document clustering algorithm assigns a set of new documents to the legacy clusters which have been identified in advance. In addition, to improve the correctness of the clustering, removing the stop words can be proposed.

  • PDF

Designing a Spam Mail Filtering System Using User Reaction and Incremental Machine Learning (사용자의 행동과 점진적 기계학습을 이용한 쓰레기 편지 여과 시스템의 설계)

  • Kim, Kang-Min;Park, Eun-Jin;Kim, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.775-778
    • /
    • 2005
  • 본 논문은 쓰레기 편지를 여과하기 위해 대상 편지에 따른 사용자들의 행동(reaction)을 묵시적(implicitly)으로 수집한 후 이를 점진적(incrementally) 기계학습기의 자질(feature)로 사용하여 편지 여과 작업의 증거가 되는 단어들을 지속적으로 학습하면서 최적의 편지 여과 결과를 제공하는 기법과 시스템 구조를 제안한다. 사용자 개인의 컴퓨터에 행동 정보와 학습 데이터를 저장하도록 설계하여 묵시적 정보 수집에서 자주 제기되는 개인 프라이버시 문제를 해결하였으며, 점진적 기계학습 기법을 사용하여 개인 정보를 포함하는 대량의 편지 학습 데이터를 모으기 힘들다는 문제를 해결하였다. 또 향후 제안하는 시스템을 이용하여 여러 종류의 기계학습 기법 중 쓰레기 편지 여과 작업을 가장 효과적으로 수행할 수 있는 기법을 선택하는 작업을 수행할 계획이다.

  • PDF

Improvement of the Gonu game using progressive deepening in reinforcement learning (강화학습에서 점진적인 심화를 이용한 고누게임의 개선)

  • Shin, YongWoo
    • Journal of Korea Game Society
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2020
  • There are many cases in the game. So, Game have to learn a lot. This paper uses reinforcement learning to improve the learning speed. However, because reinforcement learning has many cases, it slows down early in learning. So, the speed of learning was improved by using the minimax algorithm. In order to compare the improved performance, a Gonu game was produced and tested. As for the experimental results, the win rate was high, but the result of a tie occurred. The game tree was further explored using progressive deepening to reduce tie cases and win rate has improved by about 75%.

An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging (재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘)

  • Han, Jin-Chul;Kim, Sang-Kwi;Yoon, Chung-Hwa
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it cannot explain how the classification result is obtained. In order to overcome this problem, we propose an incremental teaming algorithm based on RPA (Recursive Partition Averaging) to extract IF-THEN rules that describe regularities inherent in training patterns. But rules generated by RPA eventually show an overfitting phenomenon, because they depend too strongly on the details of given training patterns. Also RPA produces more number of rules than necessary, due to over-partitioning of the pattern space. Consequently, we present the IREA (Incremental Rule Extraction Algorithm) that overcomes overfitting problem by removing useless conditions from rules and reduces the number of rules at the same time. We verify the performance of proposed algorithm using benchmark data sets from UCI Machine Learning Repository.

Design of Moa Contents Curation Service System Based on Incremental Learning Technology (점진적 학습 기반 모아 콘텐츠 큐레이션 서비스 시스템 설계)

  • Lee, Jeong-won;Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.401-402
    • /
    • 2018
  • 콘텐츠 큐레이션 서비스를 위해서 대용량 데이터를 학습하는 과정에서 발생하는 메모리부족 문제, 학습소요시간 문제 등을 해결하기 위한 "대용량 문서학습을 위한 동적학습 파이프라인 생성기술 중 빅데이터 마이닝을 위한 점진적 학습 모델" 기술이 필요하며, 본 논문에서 제안한 콘텐츠 큐레이션 서비스는 온라인상의 수많은 콘텐츠들 중 개인의 주관이나 관점에 따라 관련 콘텐츠들을 수집, 정리하고 편집하여 이용자와 관련이 있거나 좋아할 만한 콘텐츠를 제공하는 서비스이다. 본 논문에서 설계된 모아 큐레이션 서비스는 대용량의 문서를 학습함에 있어서 메모리 부족 문제, 학습 소요시간 문제 등을 해결하기 위해 학습데이터의 용량 제한이 없는 문서를 자유롭게 학습하고 부분적인 자질추가/변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법 등을 제시하였다.

  • PDF

Design and Implementation of a Generic Classification System Based on Incremental Learning Technology (점진적 학습 기술 기반 범용적인 분류기 구조설계 방법의 설계 및 구현)

  • Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.425-426
    • /
    • 2019
  • 전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.

  • PDF

Hypernetwork Memory-Based Model for Infant's Language Learning (유아 언어학습에 대한 하이퍼망 메모리 기반 모델)

  • Lee, Ji-Hoon;Lee, Eun-Seok;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.983-987
    • /
    • 2009
  • One of the critical themes in the language acquisition is its exposure to linguistic environments. Linguistic environments, which interact with infants, include not only human beings such as its parents but also artificially crafted linguistic media as their functioning elements. An infant learns a language by exploring these extensive language environments around it. Based on such large linguistic data exposure, we propose a machine learning based method on the cognitive mechanism that simulate flexibly and appropriately infant's language learning. The infant's initial stage of language learning comes with sentence learning and creation, which can be simulated by exposing it to a language corpus. The core of the simulation is a memory-based learning model which has language hypernetwork structure. The language hypernetwork simulates developmental and progressive language learning using the structure of new data stream through making it representing of high level connection between language components possible. In this paper, we simulates an infant's gradual and developmental learning progress by training language hypernetwork gradually using 32,744 sentences extracted from video scripts of commercial animation movies for children.