• 제목/요약/키워드: 점유격자 지도

검색결과 9건 처리시간 0.027초

세선화 방식에 기초한 전역 토폴로지컬 지도의 실시간 작성

  • 고방윤;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.18-18
    • /
    • 2004
  • 지도작성은 이동로봇의 주행 및 위치추정을 위해 반드시 필요한 요소이다. 이러한 지도작성에는 격자지도와 토폴로지컬 지도의 두 종류가 있다. 격자지도는 전체 환경을 작은 격자로 나누어 각각에 점유되어 있는 확률간을 부여함으로써 지도상의 모든 메트릭(metric) 정보를 나타내는 반면에, 토폴로지컬 지도는 메트릭 정보를 가짐으로써 위치추정을 가능하게 하는 노드와 이를 연결하는 에지로 표현된다.(중략)

  • PDF

미지의 환경 지도 작성을 위한 이동 로봇 시스템의 설계와 구현 (Design and Implementation of A Mobile Robot System for Mapping Unknown Environments)

  • 정보영;남상하;이준수;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.307-310
    • /
    • 2011
  • 본 논문에서는 센서 데이터의 불확실성을 고려한 효과적인 점유 격자 지도 작성 방법을 제안하고, Lego Mindstorm NXT Kit과 leJos NXT를 이용하여 개발된 환경 지도 작성을 위한 자율 이동 로봇시스템의 설계와 구현에 대해 소개한다. 그리고 제안된 점유 격자 지도 작성 방법의 효과와 성능을 확인하기 위한 실험 결과도 소개한다.

스테레오 비전 방식을 이용한 자율 이동로봇의 격자지도 작성 (Building of Occupancy Grid Map of an Autonomous Mobile Robot Based on Stereo Vision)

  • 김종협;최창혁;송재복;박성기;김문상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.330-334
    • /
    • 2001
  • This paper presents the way of building an occupancy grid map which a mobile robot needs to autonomously navigate in the unknown environment. A disparity map resulting from stereo matching can be converted into the 2D distance information. If the stereo matching has some errors, however, the subsequent map becomes unreliable. In this paper, a new morphological filter is proposed to reject 'spikes' of the disparity map due to stereo mismatch by considering the fact that these spikes occur locally. The new method has advantages that it is simpler and more easily realized than existing similar algorithms.

  • PDF

스테레오 비전 방식을 이용한 자율 이동로봇의 격자지도 작성 (Building of Occupancy Grid Map of an Autonomous Mobile Robot Based on Stereo Vision)

  • 김종협;최창혁;송재복;박성기;김문상
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.36-42
    • /
    • 2002
  • This paper presents the way of building an occupancy grid map which a mobile robot needs to autonomously navigate in the unknown environment. A disparity map resulting from stereo matching can be converted into the 2D distance information. If the stereo matching has some errors, however, the subsequent map becomes unreliable. In this paper, a new morphological filter is proposed to reject 'spikes' of the disparity map due to stereo mismatch by considering the fact that these spikes occur locally. The new method has advantages that it is simpler and more easily realized than existing similar algorithms. Several occupancy grid maps based on stereo vision using the proposed algorithm have been built and compared with the actual distance information to verify the validity of the proposed method.

이동 로봇을 이용한 동시 위치 추정 및 지도 작성에 관한 실험 연구 (An Empirical Study on Simultaneous Localization And Mapping with Mobile Robots)

  • 김혜숙;김승연;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.291-294
    • /
    • 2012
  • 본 논문에서는 주어진 환경에 대한 정보가 충분하지 않은 상황에서 지능형 에이전트에게 요구되는 스스로의 위치를 파악하기 위해 로봇이 자신의 위치 추정과 동시에 주위 환경을 인식하여 주변 지도를 작성하는 방법을 제안한다. 이동 로봇의 위치를 추정하기 위해 센서 측정값을 통해 계산된 결과 값을 파티클 필터에 적용하며 로봇의 환경 지도 작성을 위해 점유 격자 지도 방법을 사용한다. 이 두 방법을 병합하여 동시적 위치 추정 및 지도 작성 문제에 적용하여 시스템을 설계 및 구현해보고 실험결과를 소개한다.

초음파센서를 이용한 자율 이동로봇의 위치추적 (Localization of an Autonomous Mobile Robot Using Ultrasonic Sensor Data)

  • 최창혁;송재복;김문상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.666-669
    • /
    • 2000
  • Localization is the process of aligning the robot's local coordinates with the global coordinates of a map. A mobile robot's location is basically computed by a dead reckoning scheme, but this position information becomes increasingly inaccurate during navigation due to odometry errors. In this paper, the method of building a map of a robot's environment using ultrasonic sensor data and the occupancy grid map scheme is briefly presented. Then, the search and matching algorithms to compensate for the odometry error by comparing the local map with the reference map are proposed and verified by experiments. It is shown that the compensated error is not accumulated and exists within the limited range.

  • PDF

자율주행을 위한 센서 데이터 융합 기반의 맵 생성 (Map Building Based on Sensor Fusion for Autonomous Vehicle)

  • 강민성;허수정;박익현;박용완
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘 (LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving)

  • 김종호;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘 (LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving)

  • 노한석;이현성;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.