• Title/Summary/Keyword: 절삭 동력

Search Result 62, Processing Time 0.032 seconds

Analytical Prediction of Chatter for Parallel Machine Tool (병렬형 공작기계의 채터 예측)

  • Kim, Taek-Soo;Hong, Dae-Hie;Choi, Woo-Chun;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.202-206
    • /
    • 2001
  • Machine tool chatter is the self-excited vibration generated by chip thickness variation and severely degrades the quality of machined surface. The incidence of chatter is greatly affected by the dynamic characteristics of machine tool structure. Therefore, the cutting dynamics in the parallel machine tool is to be carefully studied considering the dynamic characteristics of parallel mechanism. In this paper, the vibration model of parallel machine tool is derived, in which the legs of the parallel mechanism are considered as spring-damper systems. The chatter stability charts for various machining parameters are examined with the example of the cubic parallel mechanism that is specially designed for machine tool use.

  • PDF

Detection of Chatter using Wavelet Transform (웨이브렛 변환을 이용한 채터 검출)

  • Oh, Sang-Lok;Chin, Do-Hum;Yoon, Moon-Chul;Ryoo, In-Ill;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • The chatter behaviour in endmilling is a complex and nonlinear phenomenon, so it is very difficult to detect and diagnose this chatter phenomenon, This paper presents new method for the detection of chatter in endmilling operation based on the wavelet transform. In this paper, the fundamental property of the wavelet transform is reviewed by comparing the spectrum of other algorithm such as FFT. This result using wavelet transform shows the possibiling of the chatter detection in endmilling operation.

  • PDF

A Study on the Microcutting for Configuration of Tools using Molecular Dynamics (분자동력학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구)

  • 뮨찬홍;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.83-88
    • /
    • 1993
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite elment method is impossible for a very small focused region and mesh size. As the altermative method, Molecular Dynamics or Statics is suggested and acceoted in the field of microcutting, indentation and crack propagation. In this paper using Molecuar Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

A Study on the Evaluation on High-speed Machining Characteristics of AL7075 (AL7075의 고속가공특성 평가)

  • 이종현;이동주;이응숙;신보성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.220-224
    • /
    • 2001
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and molds. To perform efficient high-speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force. To measure cutting force in high-speed machining, dynamometer has to have high natural frequency. In this paper, The dynamometer which has high natural frequency used to measure the cutting force in various cutting conditions. High-speed machining characteristics are evaluated by the cutting force, FFT analysis of the cutting force and chip formation.

  • PDF

Feed Optimization for High-Efficient Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 이송량의 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1338-1343
    • /
    • 2007
  • High-efficient machining, which means cutting a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on the cutting power regulation was proposed to realize the high-efficient machining in turning process. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

  • PDF

Monitoring of tool conditions in high-speed machining of die material (금형강의 고속가공시 공구상태의 감시)

  • Hur, Hyun;Lee, Ki-Young;Jeong, Yung-Ho;Lee, Deug-Woo;Kim, Jeong-Suk;Hwang, Kyung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.131-134
    • /
    • 1995
  • The high efficiency and accuracy in machining the die material can be abtained in high speed machining, so it is necessary to analyze the mechanism of high speed cutting process : cutting force, flank wear. The tool dynomometer with high natural frequency is newly developed. With this device, the mechanism of high speed cutting process is investigated according to speed and feedate.

  • PDF

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

A Study on the characteristic of micro deep hole drilling (마이크로 Deep hole 가공 특성에 관한 연구)

  • 김동우;조명우;이응숙;강재훈;민승기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1064-1067
    • /
    • 2001
  • Micro drilling is used in the production of fuel injection nozzle, watch, camera, air bearing and pinted circuit boards(PCB) are demanded for high precision. Recently industries of precision production require more small hole, high aspect ratio and high speed working for micro deep hole drilling. But the undesirable characteristics of micro drilling is the small signal to noise ratios, wandering motion of drill, high aspect ratio and the increase of cutting force as cutting depth increase. So in this paper to obtain the optimization of cutting condition a study on the characteristics of micro deep hole drilling used Tool dynamometer is proposed.

  • PDF

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Surface Precision due to Change of Cutting Depth and Cutting Location when Ball End Milling (볼엔드밀 가공시 절삭깊이와 가공위치의 변화에 따른 표면정밀도)

  • 박성은;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.274-278
    • /
    • 2000
  • Ball end milling process is widely used in the die and mould manufacturing because of suitableness for the machining of free form surface. But, as ball end mill is long and thin, it is easily deflected by cutting force. In this study, Cutting force, tool deflection and surface precision was measured according to the change of depth and cutting location. Cutting force was acquired with tool dynamometer and a couple of eddy-current sensor measured tool deflection in x-y direction each. After machining, surface precision was measured with roundness tester and coordination measuring machine for sculptured surface angle change and cutting depth.

  • PDF