• Title/Summary/Keyword: 절삭저항

Search Result 106, Processing Time 0.036 seconds

선삭가공에 있어서 채터진동의 검출에 관한 연구(I)

  • 구연욱;정의식;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.121-126
    • /
    • 1991
  • 기계가공에서 발생하는 채터진도에 대한 발생기구나 이론적인 해석방법에 관하여는 많은 연구 가이루어져 왔으나, 그 발생점을 객관적으로 판정하기위한 엄밀한 규정이 마련되어 있지 않기 때문에 현재까지 공작기계의 성능평가에 하나의 지표가 되고 있는 채터진동 발생점의 판정에는 주로 인간의 귀나 눈에 의한 감각적인 판단방법에 의존하고 있는 실정이다. 본 연구에서는 객관적인 채터진동 발생점의 판정 및 그의 in-process 검출방법을 확립할 목적으로, 이를 이룩하는데 절삭저항의 이용 가능성을 실험적 인 방법으로 검토하고 있다.

Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling (정면밀링에서 공구경사각에 따른 비절삭저항 변화)

  • 류시형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Parametric Study for Hole Machining in Natural Fiber Composites (천연섬유 복합재료의 홀 가공을 위한 파라메트릭 연구)

  • Lee, Dong-Woo;Oh, Jung-Suck;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, natural fiber composites including flax fiber reinforcement was manufactured. It was tried to find optimum design of drill and machining factor for minimizing the damage during hole machining in natural fiber composites. Taguchi optimization was used for minimizing the number of experiments and evaluation of the effect of machining factor during hole machining in natural fiber composites. The experimental results indicate that the newly designed drill distributes cutting resistance well and minimizes surface roughness and produces fine surfaces. Developed new drill has been dispersed in the cutting resistance during processing, it was possible to obtain the smooth hole surface. Also, it was found that optimal rotational speed and feed rate of drill for hole machining.

Study on Effects of Coatings on Cutting Tool Wear (절삭공구의 피복층이 공구마멸에 미치는 영향에 대한 연구)

  • 손태영;양민양
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 1990
  • In order to investigate tribological effects of coatings on different places on tool wear, commercial quality coated inserts were tested in production speed machining after the coatings on clearance or rake face of coated tools were selectively removed. The experimental results demonstrated that the primary role of coatings in tool wear was the reduction of the thermochemical adhesion between the tool material and workpiece. And the coating on rake face was observed to retard the progress of flank wear. In case of machining carbon steel, multicoated tools showed the most favorable results for considering the notch wear.

Cutting Force by Chip Former in Machining (절삭가공에서 칩포머에 의한 절삭저항)

  • Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • The forces acting on the tool are an important aspect of maching. For those concerned with the manufacture of machine tools, a knowledge of the forces in needed for estimation of power reguirements and for the design of machine tool elements tool-holders and fixtures, adequately rigid and free from vibration. The force reguired to form the chip is dependent on the shear yield strength of the work material un der cutting conditions which are cutting speed, workpiece, feedrate, insert type. In this study, FG, ML, MP, MC, C, RT inserts were investigated in turning using SM45C, SCM4, SKD11, SUS316, materials. The diameter of materials was 60mm, 80mm, 110mm. This paper presents MP were lowest and SKD11 were largest of the workpiece in cutting forces.

  • PDF

Machining Characteristics Elevation by Micro-structure Improvement of Aluminum Alloy (알루미늄 합금의 미세조직 개선에 의한 절삭 가공 특성 향상)

  • 채왕석;김경우;최현민;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.290-295
    • /
    • 2002
  • This research has been carried out to experiment machining characteristics by elements addition and subtraction of AC8B and sample that is used fur car piston materials. 1.Mechanical properties of development sample expressed unique mechanical properties than AC8B. 2. Cutting resistance of development sample decreased about 10% than AC8B according to increase of the cutting speed. 3. According to increase of the feedrate, all comparison workpiece found that specific cutting resistance decrease. 4. It was found that sample's machining characteristics that is developed by addition and subtraction of elements improves.

  • PDF

A Effect of Cutting Resistance by Setting Angle According to the Cutting Condition in Turning (선삭에서 절삭조건에 따라 설치각이 절삭저항에 미치는 영향)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.88-95
    • /
    • 1997
  • This study provides the useful actual data instead of the experience data using in industrial fields. Especially, values of each components of cutting force are effective in the rake angle, setting angle and cutting area. Many researches have been made on the work piece materials, kinds of bite materials, rake angle, nose radius and depth of cut, but a few on the bite setting angle. In order to select optimal cutting speed, it was summarized the following results are achieved; A chieved that an affect of cutting resistance on the setting angle is a little under giving experimental conditions and therefore a worker can be choose the value of it randomly.

  • PDF

A Study on the Influence of Cutting Conditions on the Dynamic Component of Cutting Resistance(ll) (절삭저항의 동적성분에 미치는 절삭조건의 영향에 관한 연구(II))

  • Jeon, Eun-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.58-68
    • /
    • 1984
  • In this study, the static and dynamic components of cutting resistance were measured with tool dynamometer (Swiss, pieso-electric type) when S45C, A1-alloy and brass were drilled under the some variable conditions. The results obtained are as follows; 1) The dynamic components of these cutting resistance are not related to the depth of drilled hole. 2) The static and dynamic components of cutting resistance are increased in accordance with the increase of feed and drill diameter. 3) The dynamic components of thrust force are increased in accordance with the increase of spindle speed. 4) The rate of the dynamic component to the static component is 0.3 .approx. 0.5 in torque, 0.1 .approx. 0.2 in thrust force. 5) The characteristic of the tool system is affected in dynamic component of cutting resistance, and the creasted frequency and amplitude of the chip are determined by the crilled materials. 6) The maximum amplitude of the dynamic component is increased proportionally in accordance with the feed rate and the spindle speed.

  • PDF

A Study on the Characteristics of AE Signals by Tool wear (공구마모에 따른 음향방출신호 특성 연구)

  • 조종래;원종식;정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.95-100
    • /
    • 1995
  • Automatic monitoring of cutting process is one of the most important technology for increasing the stability and the reliability of unmanned manufacturing system. In this study, basic methods which use the acoustic emission (AE) signals and sutting forces proposed to monitor tool wear (flank wear) quantitatively. Fist, in order to detect flank wear, it was investigated influence of cutting conditions, that is, cutting velocity, feed and depth of cut, on AE signals (AErems) and cutting forces. Furthermore,the relationship flank wear between AErems and cutting forces were discussed.

  • PDF

Effect of Machining Characteristics Aluminium Alloy added Composition Elements (알루미늄 합금의 성분원소가 절삭 특성에 미치는 영향)

  • 채왕석;김경우;최현민;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.857-860
    • /
    • 1997
  • The purpose of this research was to study the influence of machining characteristics for aluminum alloys. The effect of metallic microstructural variables on the measures of machinability of aluminum alloys has no been adequately investigated. Machining Characteristics are influenced significantly by mechanical characteristics, composition and structure of material etcs. For improvement of machining characteristics, various studies are reported. In this paper, composition elements add to aluminum alloys within the limit of sustaining mechanical characteristics of metallic material. We have analyzed dynamic characteristics of cutting resistance, tensile strength value, hardness value etcs.

  • PDF