• Title/Summary/Keyword: 절리 암반의 수리전도도

Search Result 20, Processing Time 0.028 seconds

Effects of GSI and Joint Orientation on the Change of Hydraulic Conductivity (GSI 및 절리의 방향이 수리전도도 변화에 미치는 영향)

  • Yoon, Yong-Kyun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, a newly modified 3-dimensional strain-dependent hydraulic conductivity modification relation which incorporates the influences of normal deformation and shear dilation is suggested. Since rock mass is simulated as a orthogonally jointed medium, an anisotropic hydraulic conductivity field can be evaluated using that relation. The empirical relationship on the basis of GSI and disturbance factor has been used to estimate the value of a modulus reduction ratio (ratio of rock mass deformation modulus to rock matrix elastic modulus). Principal hydraulic conductivity directions is not generally coincident with the global coordinate due to the inclining of joint and the influence of joint inclination is evaluated under strain rotation. Result shows that change of hydraulic conductivity does decreases with the increase of GSI and disturbance factor has much effects on the hydraulic conductivity of rock mass getting GSI value above 50. It is found that the inclination of joint impacts on the variation of hydraulic conductivity.

Numerical Studies of Subsidence and Hydraulic Conductivity Enhancement Due to Underground excavation (지하 굴착에 의한 침하와 수리전도도 증가에 관한 수치해석적 연구)

  • Yoon, Yong-Kyun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.139-146
    • /
    • 2000
  • This study investigates the changes of subsidence and hydraulic conductivity by underground mining. Coupling between post-mining induced strains and strain-dependent hydraulic conductivities is obtained by idealizing a jointed rock mass as an equivalent porous medium in which the hydraulic conductivity of a single joint is defined through parallel plate description. Results indicate that post-mining hydraulic conductivities are directly related to the strain field occurred by subsidence induced deformation. Maximum subsidence and hydraulic conductivity values increase as a panel width does widen. Joint spacing has an effect on the intensity of the changes in hydraulic conductivity.

  • PDF

Numerical Studies of Subsidence and Hydraulic Conductivity Enhancement Due to Underground Excavation (지하 굴착에 의한 침하와 수리전도도 증가에 관한 수치해석적 연구)

  • 윤용균
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.387-394
    • /
    • 2000
  • This is study investigates the changes of subsidence and hydraulic conductivity by underground mining Coupling between post-mining induced strains and strain-dependent hydraulic conductivities is obtained by idealizing a jointed rock mass as an equivalent porous medium in which the hydraulic conductivity of a single joint is defined through parallel plate description. Results indicate that post-mining hydraulic conductivities are directly related to the strain field occurred by subsidence induced deformation. Maximum subsidence and hydraulic conductivity values increase as a panel width does widen. Joint spacing has an effect on the intensity of the changes in hydraulic conductivity.

  • PDF

Hydraulic Conductivity Changes Due to Subsidence Using Rock Mass Classification Parameters (암반분류변수를 이용한 침하에 따른 수리전도도 변화 해석)

  • 윤용균;김장순;김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2003
  • The change of strain-dependent hydraulic conductivity around mined panels due to subsidence is examined where normal and shear strains, modulus reduction ratio and joint spacing are major factors controlling the changes of hydraulic conductivity. Modulus reduction ratio and joint spacing are defined through RMR and RQD, respectively. Utilizing these two empirical parameters, changes of hydraulic conductivity values of a full gamut of rock mass conditions are determined. The change of hydraulic conductivity is not apparent in the near surface area and more significant change takes place in the area around mined panels. A zone of strong influence from the subsidence extends to a height of approximately 20m above mined panels. The shear strain does also play the role of increasing a hydraulic conductivity around mined panels. As RMR of rock mass decreases, a hydraulic conductivity is found to be increased and this means that subsidence in a poor rock with low RMR has a great effect on a hydraulic conductivity field.

A Comparative Study on the REV, non-REV and Joint Network Methods for Analysis of Groundwater Flow in Jointed Rock Masses (절리암반내 지하수 유동해석을 위한 대표체적법, 비대표체적법 및 절리망 해석법의 비교 연구)

  • 문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.217-228
    • /
    • 1999
  • The three methods of analysis (i) REV(representative elemental volume), (ii) non-REV and (iii) joint network analysis are introduced in this paper to analyze the groundwater flow in jointed rock mass and the inflow into underground excavations. The results from those methods are compared one another to reveal their characteristics by varying the number of joints and the diameter of the opening. The pre-processor, the so-called sequential analysis, is introduced to predict the equivalent hydraulic conductivity of a jointed rock mass having a number of intersecting joints. Using the finite element mesh, joint map and sequential analysis, the equivalent hydraulic conductivities are calculated for all 445 elements. The hydraulic inhomogeneity and the determination of the representative properties of jointed rock masses are discussed. In the REV analysis where the entire rock mass is homogenized through the representative properties, the inflow is increased regularly and consistently by increasing the joint density, the opening size and the conductivity contrast value. Though the non-REV analysis showed irregular variation of the inflow due to the local inhomogeneity allowed to individual elements, the inflow approached the REV results as the characteristic length increases. The joint network analysis showed the most sensitive reaction to the joint density, the opening size and the presence of the network crossing the opening. The reliability of the network analysis depends on the geometric data of individual joints. In view of the limited field data on joint geometry and possible uncertainty the REV and non-REV methods are considered more practical and rational than the joint network analysis.

  • PDF

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System (절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi;Lee, Dahye
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

Effects of Fracture Tensor Component and First Invariant on Block Hydraulic Characteristics of the 2-D Discrete Fracture Network Systems (절리텐서의 성분 및 일차불변량이 2-D DFN 시스템의 블록수리전도 특성에 미치는 영향)

  • Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • In this study, the effects of fracture tensor component and first invariant on block hydraulic behaviors are evaluated in the 2-D DFN(discrete fracture network) systems. A series of regression analysis is performed between connected fracture tensor components and block hydraulic conductivities estimated at every $30^{\circ}$ hydraulic gradient directions for a total of 36 DFN systems having various joint density and size distribution. The directional block hydraulic conductivity seems to have strong relation with the fracture tensor component estimated in direction perpendicular to it. It is found that an equivalent continuum approach could be acceptable for the 2-D DFN systems under condition that the first invariant of fracture tensor is more than 2.0~2.5. The first invariant of fracture tensor seems highly correlated with average block hydraulic conductivity and can be used to evaluate hydraulic characteristics of the 2-D DFN systems. Also, a possibility of upscaling using the first invariant of fracture tensor for the DFN system is addressed through this study.