• Title/Summary/Keyword: 절리 교호

Search Result 4, Processing Time 0.02 seconds

A Case Study on Collapse Characteristics of Slope during Construction in the Chung-Cheong Area (시공 중 비탈면의 붕괴 특성에 대한 충청지역 사례연구)

  • Lee, Jundae;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.23-32
    • /
    • 2015
  • Most studies on slope collapsed have focused on collapse cases that occur on stabilized slopes in public use. Few studies have been conducted on the collapse characteristics of slopes that occur during construction before stabilization of the slope. In this study, detailed investigation was conducted for 79 sites where slope collapse occurred during or immediately after construction in the Chungcheong region, and their geometrical characteristics, collapse characteristics, design and reinforcement methods were evaluated. As a result of this analysis, it was found that the Chungbuk (CB) area was marked by plane-type collapse and surface layer collapse whereas the Chungnam (CN) area was marked by surface layer collapse or loss of sedimentary rocks. Furthermore, the major collapse factors of the Chungbuk region were joint alternations (53%) and weathering (25%), and the blocking due to multidirectional joints and foliation was also an influencing factor. In the phyllite area, too, the development of joints (55%) was a major factor, but the geological characteristics (36%) of sedimentary rocks such as faults and coaly shale also had considerable effects. Therefore, the geological, climatic, and environment characteristics were found to have affected the stability of slopes.

Consideration of Changed Attitude of Discontinuity through the Depth -Example at Honam Coal Field and Around Suwon Area- (심도에 따른 불연속면의 형태 변화에 대한 고찰 -호남탄전과 수원인근 지역을 예로 하여-)

  • Lee, Byung-Joo;Choon, Sun-Woo
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • We have a question about the changing possibility of orientation of discontinuities through the depth of under-ground. To know this, the data from Honam coalfield composed of shale, sandstone and coal and Suwon area which crops out mica schist, were analyzed the discontinuities measured by BIPS and Televiewer. In Honam coalfield the orientations of joints are changed at 30-40 m depth of underground and in Suwon area they are changed around 20 m depth. To compared the results from Honanam coalfield and Suwon area, there are different rock type and geologic structure. However, the attitude of the discontinuities are changing at 20-30 m depth of underground.

Stability and Damage Evaluation of the Buddha Triad and 16 Rock-Carved Arhat Statues at Seongbulsa Temple in Cheonan, Korea (천안 성불사 마애석가삼존과 16나한상의 손상도 및 안정성 평가)

  • Yang, Hyeri;Lee, Chan Hee;Jo, Young Hoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.78-99
    • /
    • 2020
  • The Buddha triad and 16 Arhat statues carved on the rock surface at Seongbulsa temple is the only domestic remaining example of all 16 Arhats, so its academic value is very high. However, it is severely damaged and so required a stability evaluation through study of digital documentation and precise diagnosis for the purpose of comprehensive conservation. This process established that the Buddha statues were of similar scale, while the Arhats showed a wide variety of sizes, and the two kith and kin in the volume were larger than the Arhats. It was estimated that the statues of food for Buddha are similar to the Arhat statues, and most of the statues are well-formed. The rock used to carve the Buddha statues is banded gneiss with distinct foliation, alternating between white bands of quartz and feldspar and black bands composed of biotite. The Buddha statues have been damaged by physical weathering, discoloration, and biological contamination. In damage evaluations, joint (3.6 crack index), peeling (5.2%), exfoliation (1.7%), and falling off (0.1%) were observed on the rock surface of the Buddha statues. In particular, due to severe biological weathering, stage 9 and 10 biological coverage of the rock surface accounted for 57.5% of the total area, and stages 5 to 8 also accounted for a high share at 22.3%. The discoloration factors were shown to be dark brown and white with Fe, Ca, and S, and a large amount of C detected in the blackened contaminants, and the damage weight high in all areas. Discontinuities in different directions were identified in the rock surface. Analysis of potential rock failure types indicated that there is a possibility of plane and toppling failure, but wedge failure is unlikely to occur. The mean ultrasonic velocity of the main rock surface was 2,463m/sec, the lower part of the left side with a large number of joints was relatively low, and the highly weathered (HW) type to the completely weathered (CW) type concentrated distribution, showing weak properties. For the Buddha statues, conservation treatment is required for about 14.9% of micro cracks and 58.9% of exfoliation cracks. In addition, in order to improve the conservation environment of the Buddha statues, maintenance of drainage and ground preparations for the rock surface gradient and plants are necessary, and protection facilities should be reviewed for long-term conservation and management purposes.

Conservation Scientific Diagnosis and Evaluation of Bird Track Sites from the Haman Formation at Yongsanri in Haman, Korea (함안 용산리 함안층 새발자국 화석산지의 보존과학적 진단 및 평가)

  • Lee, Gyu Hye;Park, Jun Hyoung;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.74-93
    • /
    • 2019
  • The Bird Track Site in the Haman Formation in Yongsanri (Natural Monument No. 222) was reported on the named Koreanaornis hamanensis and Jindongornipes kimi sauropod footprint Brontopodus and ichnospecies Ochlichnus formed by Nematoda. This site has outstanding academic value because it is where the second-highest number of bird tracks have been reported in the world. However, only 25% of the site remains after being designated a natural monument in 1969. This is due to artificial damage caused by worldwide fame and quarrying for flat stone used in Korean floor heating systems. The Haman Formation, including this fossil site, has lithofacies showing reddish-grey siltstone and black shale, alternately. The boundary of the two rocks is progressive, and sedimentary structures like ripple marks and sun cracks can clearly be found. This site was divided into seven formations according to sedimentary sequences and structures. The results of a nondestructive deterioration evaluation showed that chemical and biological damage rates were very low for all formations. Also, physical damage displayed low rates with 0.49% on exfoliation, 0.04% on blistering, 0.28% on break-out; however, the joint crack index was high, 6.20. Additionally, efflorescence was observed on outcrops at the backside and the northwestern side. Physical properties measured by an indirect ultrasonic analysis were found to be moderately weathered (MW). Above all, the southeastern side was much fresher, though some areas around the column of protection facility appeared more weathered. Furthermore, five kinds of discontinuity surface can be found at this site, with the bedding plane showing the higher share. There is the possibility of toppling failure occurring at this site but stable on plane and wedge failure by means of stereographic projection. We concluded that the overall level of deterioration and stability were relatively fine. However, continuous monitoring and conservation treatment and management should be performed as situations such as the physicochemical weathering of the fossil layer, and the efflorescence of the mortar adjoining the protection facility's column appear to be challenging to control.