• Title/Summary/Keyword: 절리암반

Search Result 508, Processing Time 0.027 seconds

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

The Mechanical Behavior of Jointed Rock Masses by Using PFC2D (PFC2D를 이용한 절리암반의 역학적 물성 평가연구)

  • Park Eui-Seob;Ryu Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.119-128
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

Rock Joint Trace Detection Using Image Processing Technique (영상 처리를 이용한 암석 절리 궤적의 추적)

  • 이효석;김재동;김동현
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.373-388
    • /
    • 2003
  • The investigation on the rock discontinuity geometry has been usually undergone by direct measurement on the rock exposures. But this sort of field work has disadvantages, which we, for example, restriction of surveying areas and consuming excessive times and labors. To cover these kinds of disadvantages, image processing could be regarded as an altemative way, with additional advantages such as automatic and objective tools when used under adequate computerized algorithm. This study was focused on the recognition of the rock discontinuities captured in the image of rock exposure by digital camera and the production of the discontinuity map automatically. The whole process was written using macro commands builtin image analyzer, ImagePro Plus. ver 4.1(Media Cybernetic). The procedure of image processing developed in this research could be divided with three steps, which are enhancement, recognition and extraction of discontinuity traces from the digital image. Enhancement contains combining and applying several filters to remove and relieve various types of noises from the image of rock surface. For the next step, recognition of discontinuity traces was executed. It used local topographic features characterized by the differences of gray scales between discontinuity and rock. Such segments of discontinuity traces extracted from the image were reformulated using an algorithm of computer decision-making criteria and linked to form complete discontinuity traces. To verify the image processing algorithms and their sequences developed in this research, discontinuity traces digitally photographed on the rock slope were analyzed. The result showed about 75~80% of discontinuities could be detected. It is thought to be necessary that the algorithms and computer codes developed in this research need to be advanced further especially in combining digital filters to produce images to be more acceptable for extraction of discontinuity traces and setting seed pixels automatically when linking trace segments to make a complete discontinuity trace.

Some Considerations on the Distinct Element Modelling for the Stability Analysis of a Tunnel in a Jointed Rock Mass (절리암반내 터널의 안정성 평가를 위한 개별요소 모델링에 대한 고찰)

  • Chang, Seok-Bue;Huh, Do-Hak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.3-12
    • /
    • 2001
  • This paper presents the proposed methods of DE (distinct element) modelling to estimate the stability of tunnels in jointed rock masses. First, the criterion to select the joint set(s) contributed to the discontinuous behaviour in a tunnel section is proposed. Selected joint set(s) is(are) considered to form the edges of distinct elements (rock blocks) and the others to modify the elastic properties of rock blocks. The complex DE model with the average and the deviation of joint orientation and joint length for each joint set was compared to the simple model with only the average of joint orientation and the assumption that joint length is infinite. As a result, the latter is suitable to the purpose of tunnel design because it can show the consistent behaviour of a jointed rock mass such as the locally discontinuous failure and the global anisotropic behaviour.

  • PDF

A Study on Precision Measurement of Rock Joint Using 3D-Laser Scanner (3D-Laser scanner를 이용한 암반 절리의 정밀측정에 관한 연구)

  • 이승호;황영철;김세현;심석래;정태영
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2004
  • The existing methods that can be adopted for measuring joints involve either to use borehole or photogrammetry. Due to restricted space, acquisition of data in limited area, and measurement errors, above methods have limitations acquiring the objective and correct results. To get over defects of existing joint measurement methods, joints have been measured using 3D-Laser scanner with accuracy and efficiency. This research aims to investigate an accuracy and applicabiliy of 3D-Laser scanner for measuring rock slope joints. Measurement of rock slope joints has been executed using 3D-Laser scanner & clinometer and then, results from both methods are compared. Results from both methods indicate that they show nearly equal features for joint distributions and numbers of joint information obtained by 3D-Laser scanner are much more than ones measured using clinomer. Therefore, 3D-Laser scanner turns out to be very effective by the fact that it contributes to reduce investigation costs & periods, objectify data from rock slope joints.

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

A Study of Statistical Analysis of Rock Joint Directional Data (암반 절리 방향성 자료의 통계적 분석 기법에 관한 연구)

  • 류동우;김영민;이희근
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • Rock joint orientation is one of important geometric attributes that have an influence on the stability of rock structures such as rock slopes and tunnels. Especially, statistical models of the geometric attributes of rock joints can provide a probabilistic approach of rock engineering problems. The result from probabilistic modeling relies on the choice of statistical model. Therefore, it is critical to define a representative statistical model for joint orientation data as well as joint size and intensity and build up a series of modeling procedure including analytical validation. In this paper, we have examined a theoretical methodology for the statistical estimate and hypothesis analysis based upon Fisher distribution and bivariate normal distribution. In addition, we have proposed the algorithms of random number generator which is applied to the simulation of rock joint networks and risk analysis.