Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.7
/
pp.884-889
/
2021
The number of people infected with Covid-19 in Korea seemed to be gradually decreasing thanks to various efforts such as social distancing and vaccines. However, just as the number of infected people increased after a particular incident on February 20, 2020, the number of infected people has been increasing rapidly since December 2020 by approximately 500 per day. Therefore, the future Covid-19 is predicted through the Prophet algorithm using Kaggle's dataset, and the explanatory power for this prediction is added through the coefficient of determination, mean absolute error, mean percent error, mean square difference, and mean square deviation through Scikit-learn. Moreover, in the absence of a specific incident rapidly increasing the cases of Covid-19, the proposed method predicts the number of infected people in Korea and emphasizes the importance of implementing epidemic prevention and quarantine rules for future diseases.
In general, several moving regions with different motions coexist in a block located on motion boundaries in the block-based motion estimation. In this case the motion compensation error(MCEs) are different with the moving regions. This is inclined to deteriorate the quality of motion compensated images because of the inaccurate motions estimated from the conventional mean absolute error(MAE) based matching function in which the matching error per pixel is accumulate throughout the block. In this paper, we divided a block into the regions according to their motions using the motion information of the spatio-temporally neighboring blocks and calculate the average MCF for each moving mentioned. From the simulation results, we showed the improved performance of the proposed method by comparing the results from other methods such as the full search method and the edge oriented block matching algorithm. Especially, we improved the quality of the motion compensated images of blocks on motion boundaries.
KIPS Transactions on Software and Data Engineering
/
v.6
no.12
/
pp.565-572
/
2017
Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.
Journal of the Korea Society of Computer and Information
/
v.28
no.7
/
pp.11-18
/
2023
In this paper, we evaluate deep learning time series forecasting models. Recent studies show that those models perform better than the traditional prediction model such as ARIMA. Among them, recurrent neural networks to store previous information in the hidden layer are one of the prediction models. In order to solve the gradient vanishing problem in the network, LSTM is used with small memory inside the recurrent neural network along with BI-LSTM in which the hidden layer is added in the reverse direction of the data flow. In this paper, we compared the performance of Informer by comparing with other models (LSTM, BI-LSTM, and Transformer) for real Nitrogen dioxide (NO2) data. In order to evaluate the accuracy of each method, mean square root error and mean absolute error between the real value and the predicted value were obtained. Consequently, Informer has improved prediction accuracy compared with other methods.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.701-705
/
2006
강우자료는 수문 모델링 작업에서 가장 기초적인 수문학적 입력자료로 시간과 공간에 따른 변동성이 크므로 규명하기 복잡한 수문현상 중의 하나이다. 산악지역이 많은 우리나라의 지형학적 특성과 태풍, 장마 및 특히, 최근의 게릴라성 집중호우 등으로 인하여 이러한 변동성이 더욱 커지고 있는 실정이다. 장기간 실측된 수문기상 기초 자료가 부족한 우리나라의 실정상 홍수예보 및 수공구조물 설계를 위해 정확한 강우량 자료의 취득이 선행돼야 한다. 따라서 적절한 장소에 수문관측소 설치 및 관리를 통해 양호한 강우량 자료를 획득해야 하지만, 현장 여건상 등의 이유로 미계측 및 결측, 이상자료가 발생하고 있다. 따라서 이러한 미계측 혹은 결측지점의 우량을 추정할 수 있는 방법을 비교, 분석하여 적절한 보정과정을 수행할 필요가 있다. 그간의 연구에서는 미계측 지점 혹은 산악지역에서의 점 강우량 보정방법에 대한 연구가 진행되었지만, 본 연구에서는 '도시홍수재해관리기술연구사업단'에서 운영 중인 도시하천 유역 특히 소배수구역에서의 결측 자료에 대해 여러 추정 방법을 비교, 분석하여 적절한 방안을 찾고자 한다. 이를 위하여 중랑천 유역의 3개 소배수 구역(월계1 배수구역, 군자 배수구역, 어린이대공원 배수구역)에 설치된 3개 우량관측소와 건설교통부 관할 우량관측소 2개소의 우량자료를 사용하였다. 본 연구에서는 결측치 보간을 위하여 널리 이용되고 있는 산술평균법(Arithmetic Average method), 역거리법(Reciprocal Distance Squared method), 거리고도비율법(Ratio of Distance and Elevation method), 인근관측소와의 관계식 이용, 크리깅방법(Simple Kriging method)을 비교, 검토 적용하였다. 중랑천 유역의 소배수구역을 대상으로 연중 발생하는 큰 호우사상에 대해 임의의 강우관측소를 결측지점으로 가정하고 주변의 강우관측소로부터 각각의 방법을 이용해 가중치들을 산정하여 결측지점의 강우량 값을 보정하고자 하였다. 또한 각각의 방법을 이용하여 얻어진 결과에 대해 실측값과 보정값의 오차정도를 평균절대오차법(Mean Absolute Error)과 제곱평균제곱근오차법(Root Mean Squared Error)에 의해 산정하여 보정 방법간의 효율성을 검토하고자 하였다.
Journal of the Korean Data and Information Science Society
/
v.25
no.3
/
pp.513-522
/
2014
Using the assumption that the price of a stock follows a geometric Brownian motion with constant volatility, Black and Scholes (BS) derived a formula that gives the price of a European call option on the stock as a function of the stock price, the strike price, the time to maturity, the risk-free interest rate, the dividend rate paid by the stock, and the volatility of the stock's return. However, implied volatilities of BS method tend to depend on the stock prices and the time to maturity in practice. To address this shortcoming, we estimate the implied volatility function as a function of the strike priceand the time to maturity for data consisting of the daily prices for KOSPI200 call options from January 2007 to May 2009 using support vector regression (SVR), the multiple additive regression trees (MART) algorithm, and ordinary least squaress (OLS) regression. In conclusion, use of MART or SVR in the BS pricing model reduced both RMSE and MAE, compared to the OLS-based BS pricing model.
The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, the flash points of two flammable binary mixtures, n-pentanol + n-propanol and n-pentanol + n-heptanol systems were measured using a Seta flash closed cup tester. The flash point was estimated using the methods based on Raoult's law and multiple regression analysis. The measured flash points were also compared with the predicted flash points. The absolute average errors (AAE) of the results calculated by Raout's law were $1.3^{\circ}C$ and $1.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. The absolute average errors of the results calculated by multiple regression analysis were $0.4^{\circ}C$ and $0.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. According to the AAE, the calculated values based on multiple regression analysis were better than those based on Raoult's law.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.1
/
pp.1-7
/
2019
In this study, we estimated the tropospheric delay of GNSS (Global Navigation Satellite System) signals during passing through the atmosphere in relation to weather and seasonal factors. For this purpose, we chose four CORS (Continuously Operating Reference Station) stations from inland (CCHJ and PYCH) and on the coast (GEOM and CHJU). A total of 48 days for each station (one set of data for each week) were downloaded from the NGII (National Geographic Information Institute) and processed it using the scientific GNSS software. The average tropospheric delays in winter are less than 2,400 mm, which is about 200 mm less than those in summer. The estimated tropospheric delay shows a similar pattern from all stations except the absolute bias in magnitude, while a large delay was observed for the station located on the coast. In addition, the delay during the day was relatively stable in winter, and the average tropospheric delay was strongly related to the orthometric height. The inland stations have tropospheric delays by the precipitation rather than humidity due to dry weather and difference in temperature. On the contrary, it was primarily caused by the humidity on the sea. The correlation between temperature and water vapor pressure is 0.9 or larger for all stations, and the tropospheric delay showed a high linear relationship with temperature. It is necessary to analyze the GNSS data with higher temporal resolution (e.g. all RINEX data of the year) to improve the stability and reliability of the correlation results.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.920-923
/
2017
본 연구는 기존의 수요 예측 등의 시계열 분석에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial Neural Network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 인공신경망의 가장 기본적인 종류인 전방향 신경망(Feedforward Neural Network)의 초모수(Hyperparameter) 선정에 그리드 탐색(Grid Search)을 적용하여 최적의 모형을 찾고자 하였다. 훈련 자료로는 2015년 3월부터 8월까지의 일별 KBO 관중 수 자료를 대상으로 하였고, 예측력 검증을 위해 2015년 9월 관중 수를 예측하여 실제 관측값과 비교하였다. 그 결과, 그리드 탐색법에서 최적 모형이라고 판단한 모형의 예측력은, 평균 절대 백분율 오차(MAPE) 기준으로 평균 27.14% 였다. 또한, 앙상블 기법에서 착안하여 오차율이 낮은 모형 5개의 예측값 평균의 MAPE는 평균 28.58% 였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 14%, 13.6% 높은 예측력을 보이고 있다.
Moraes, Macia C. da S.;Sampaio, Elsa;Tenorio, Ricardo S.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.1
/
pp.153-160
/
2020
The kinetic energy of the rain drops was predicted in a relation between the rain rate and rain quantity, derived directly from the rain drop size distribution (DSD), which had been measured by a disdrometer located in the eastern state of Alagoas-Brazil. The equation in the form of exponential form suppressed the effects of large drops at low rainfall intensity observed at the beginning and end of the rainfall. The kinetic energy of the raindrop was underestimated in almost rain intensity ranges and was considered acceptable by the performance indicators such as coefficient of determination, average absolute error, percent relative error, mean absolute error, root mean square error, Willmott's concordance index and confidence index.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.