• Title/Summary/Keyword: 절대광물조성

Search Result 12, Processing Time 0.021 seconds

Heavy Metal Contents of the Surface Water and Stream Sedi-ments from the Talc Mine Area, Western Part of Chungneam (충남 서부 활석광산 주변의 지표수 및 하상 퇴적물의 중금속 함량)

  • 송석환;김명희;민일식
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.2
    • /
    • pp.139-152
    • /
    • 2001
  • 충남 서부 활석광산 주변의 수계에 대한 원소 함량특성에 대해 알아보고자 대흥 및 광천광산에 대해 수질 및 하상 퇴적물 시료와 함께 광산 주변 토양 및 모암 시료를 채취, 비교하였다. 대흥지역 퇴적물은 대부분 원소에서 SP가 GN에 비해 높았는데 이는 퇴적물 내 유색 및 무색광물 함량 차이로 판단된다. 절대 함량 비교에서 광물 결정구조 내 쉽게 Mg와 치환하는 원소는 낮은비율을, Fe와 치환하는 원소는 높은 비율을 보였는데 이는 퇴적물 내 주 구성광물내 원소 치환특성을 반영하기 때문으로 판단된다. 절대 함량의 감소 순서와 타원소들과 높은 상관관계(>0.85)의 빈도를 보이는 원소들 사이의 차이는 퇴적물 화학조성에 이차광물과 비정질 광물등의 조성도 반영되었음을 암시한다. 대흥지역 지표수는 대부분 원소에서 MSP가 SP와 GN의 중간값을, MSG는 LGN과 MSP의 중간값을 조여 수계의 혼합특성을반영하는 것으로 판단된다. 절대 함량관계에서는 SP는 GW1과 유사했고, GN은 LGN과 유사했으며, 절대함량은(Mg, Fe), (As, Sc), (Mo, V, Se) 순서로 낮아졌다. 광천지역은 갱내수가 천부 지하수에 비해 대부분 원소에서 높은 함량을 보였는데, 이는 갱내수가 더욱더 많은 물-암석반응을 거친 때문으로 판단된다. 절대 함량은 Mg, Br, Fe, (Sc, Cr), (An, Ni, V)순서로 감소하였다. 갱냉수의 지역간 원소 함량 차이는 사문암화가 우세한 광천지역과 활석화가 우세한 대흥지역 모암들 사이의물-암석 상화반응의 차이를 보여주는 것으로 판단된다 두 지역의 상부 토양 및 모암 조성에서 SP가 GN에 비해 높은 Mg 비, Ni, Cr, Co 등 함량을 보였는데, 이는 사문암 지역 내 Mg, Ni, Cr 등이 풍부한 광물들 탓으로 판단된다. 퇴적물과 수질 사이에서는 함량 경향을 뚜렷하지 않았고 원소에 따라 서로 다른 힘량 차이를 보였는데, 이는 퇴적물 원소 함량이 수계 조성을 반영하는 것이 아님을 나타낸다. 상부-토양-암석-수계의 조성관계에서 대흥지역 지표수 중 SP 조성이, 광천지역은 갱냉수가 지하수의 조성에 가까웠다.

  • PDF

Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition (황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.

Development of Prediction Model for XRD Mineral Composition Using Machine Learning (기계학습을 활용한 XRD 광물 조성 예측 모델 개발)

  • Park Sun Young;Lee Kyungbook;Choi Jiyoung;Park Ju Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.2
    • /
    • pp.23-34
    • /
    • 2024
  • It is essential to know the mineral composition of core samples to assess the possibility of gas hydrate (GH) in sediments. During the exploration of gas hydrates (GH), mineral composition values were obtained from each core sample collected in the Ulleung Basin using X-ray diffraction (XRD). Based on this data, machine learning was performed with 3100 input values representing XRD peak intensities and 12 output values representing mineral compositions. The 488 data points were divided into 307 training samples, 132 validation samples, and 49 test samples. The random forest (RF) algorithm was utilized to obtain results. The machine learning results, compared with expert-predicted mineral compositions, revealed a Mean Absolute Error (MAE) of 1.35%. To enhance the performance of the developed model, principal component analysis (PCA) was employed to extract the key features of XRD peaks, reducing the dimensionality of input data. Subsequent machine learning with the refined data resulted in a decreased MAE, reaching a maximum of 1.23%. Additionally, the efficiency of the learning process improved over time, as confirmed from a temporal perspective.

Comparisons of Incompatible Element Contents between the Perilla frutescens var. japonica and Sesamum indicum in Keumsan Area (금산 지역 들깨와 참깨의 비호정성 원소 함량 비교)

  • Song, Suck-Hwan;Kim, Ill-Chool
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.61-79
    • /
    • 2009
  • This study is for incompatible element contents of Perilla frutescens and Sesamum indicum from the Keumsan: biotite granite, phyllite and shale areas. In the soils, high elements are shown in the granite and phyllite areas, and in the areas of the Perilla frutescens. Positive correlations are distinctive within the granite for the Perilla frutescens, but the shale for the Sesamum indicum. These relationships can be explained with relative propositions of minerals containing the incompatible element. In the plants, high elements are shown in the shale and the Sesamum indicum are high in the comparisons of the same soil types. The low parts are mainly high. Regardless of the soil types, the lower and upper parts, respectively, are high in the Y, Zr and Rb contents for the Perilla frutescens, but, Ta, Nb, Th and U contents for the Sesamum indicum. Positive correlations are distinctive within plants of the phyllite. Comparing with the soil types, all HFS and Cs contents of the LFS in the plants are low with differences of several to hundred times, but high in the Sr contents with differences of several times. In the comparisons between plants and soil types, Y, Zr, Hf, Ta, Nb, Rb, and Sr of the phyllite and Th, U, Ba and Cs of the shale for the Perilla frutescens as well as Y, Zr, Hf, Rb, Sr, Ba and Cs of the phyllite and Ta, Nb, Th and U of the shale for the Sesamum indicum are chemically similar to the soils. In the comparisons of the each parts for the plant types, differences with the soils are big in the granite.

Basin evolution and provenance of . sediments of the Cretaceous Poongam sedimentary Basin (백악기 풍암 퇴적분지의 생성 진화와 퇴적물 기원)

  • Cheong Dae kyo;Kim Kyung hee
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.28-34
    • /
    • 1999
  • The Cretaceous Poongam sedimentary Basin in Kangwon-do, Korea consists alluvial deposits of conglomerates, sandstones, mudstones or siltstones, and volcaniclastics. The Poongam Basin was formed as a fault margin sag or a transpressional basin developed along a strike-slip fault zone, and received huge amount of clastic sediments from the adjacent fault-scaip. It formed an aggrading alluvial fan system and a volcaniclast-supplied marginal lake environment, while tectonic activity and volcanism attenuated toward the end of basin formation. Following the Folk's classification, the sandstones of the Poongam Basin are identified as lithic wackes or feldspathic wackes. The areal and sequential variation of the mineral composition in the sandstones is not distinct. The results of K-Ar age dating from the intruding andesites, volcaniclastics and volcanic fragments in sedimentary rocks show a range of 70 Ma to 84 Ma. It suggests that volcarism occurred sequentially within a relatively short period as the pre-, syn-, and post-depositional events. It was the short period in the late Cretaceous that the basin had evolved i.e., the basin formation, the sediment input and fill, and the , intrusion and extrusion of volcanic rocks occurred. The Poongam sedimentary sequence is a typical tectonic-controlled coarse sedimentary facies which is texturally immature.

  • PDF

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF

Geochemical Characteristics of Deep Granitic Groundwater in Korea (국내 화강암질암내 심부지하수의 지구화학적 특성)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.199-211
    • /
    • 1997
  • As a part of study on geological disposal of radioactive waste, hydrogeochemical characteristics of deep granitic groundwater in Korea were investigated through the construction of a large geochemical dataset of natural water, the examination on the behaviour of dissolved constituents, and the consideration of phase stability based on thermodynamic approach. In granitic region, the contents of total dissolved solids increase progressively from surface waters to deep groundwaters, which indicates the presence of more concentrated waters at depth due to water-rock interaction. The chemical composition of groundwater evolves from initial $Ca^{2+}$-(C $l^{-}$+S $O_4$$^{2-}$) or $Ca^{2+}$-HC $O_3$$^{-}$ type to final N $a^{+}$-HC $O_3$$^{-}$ or N $a^{+}$-(C $l^{-}$+S $O_4$$^{2-}$) type, via $Ca^{2+}$-HC $O_3$$^{-}$ type. Three main mechanisms seem to control the chemical composition of groundwater in the granitic region; 1) congruent dissolution of calcite at shallower depth, 2) calcite precipitation and incongruent dissolution of plagioclase at deeper depth, and 3) kaolinite-smectite or/and kaolinite-illite reaction at equilibrium at deeper depth. The behaviour of dissolved major cations (C $a^{2+}$, $K^{+}$, $Mg^{2+}$, M $a^{+}$) and silica is likely to be controlled by these reactions.

  • PDF

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

The Weathering and Chemical Composition of Young Residual Entisols in Korea (잔적 암쇄토의 화학조성과 풍화도)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sun-Kwan;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2001
  • The weathering rates and change of chemical composition of 6 residual Entisols derived from granite, granite-gneiss, limestone, sandstone, shale, amd basalt in Korea were studied. The chemical composition of each profile with parent rocks were determined using XRF with the physico-chemical properties and the morphology of soils. In the A horizons of all the soils except Euiseong series, the content of clay, organic matter and cation exchange capacity(CEC) showed higher than those of C horizon, but bulk density and pH showed lower than C horizon. Clay content in the soil from sandstone was decrease with soil depth, which may caused by the elluriation. In total element analysis. $SiO_2$ was high in the soil from granite. granite-gneiss, sandstone and compare with basalt and limestone. $Fe_2O_3$ and MgO was high in the soil from basalt, limestone and shale compare with granite. granite-gneiss and sandstone. And ignition loss was particularly high in the soil from basalt and limestone. The rate of element loss was higher in base cations(Ca, K, Mg, Na) than Si, Al, Fe in the soils. The concentrations of $TiO_2$ in the A horizon compare with that of the C horizon was due to resulting from losses of other less stable elements existed. Considering with relative rate of each elements in soils, $SiO_2$ and $Al_2O_3$ which originated from sandstone and granite, granite-gneiss, sandstone, shale, and basalt were lost higher than those from lime tone, but loss of basic cations were more in the soil from limestone which may be rapid weathering of calcite. The magnitude of losses of the overall elements were increased in the order of the soils from sandstone and granite ${\gg}$ limestone and shale) granite-gneiss and basalt.

  • PDF