• 제목/요약/키워드: 절단량

검색결과 383건 처리시간 0.019초

Aspergillus ochraceus와 Rhodotorula mucilaginosa 저감을 위한 자외선과 유기산 복합처리 효과 분석 (Analysis of the Reduction Effect of Combined Treatment with UV-C and Organic Acid to Reduce Aspergillus ochraceus and Rhodotorula mucilaginosa Contamination)

  • 이은선;김종희;김부민;오미화
    • 한국식품위생안전성학회지
    • /
    • 제39권1호
    • /
    • pp.54-60
    • /
    • 2024
  • 본 연구는 축산물 생산 환경에서 오염 가능한 Aspergillus ochraceus와 Rhodotorula mucilaginosa를 저감하기 위하여 자외선과 유기산을 활용하여 그 효과를 구명하였다. 이를 위하여 각각의 균 현탁액(107-108 spores/mL)을 칼 표면에 1 mL 접종하고 37℃에 건조한 후 각각의 처리 조건에 활용하였다. 먼저 유기산 효과를 구명하기 위하여 아세트산, 젖산, 구연산을 활용하였으며 적정 농도 선정을 위하여 0.5, 1, 2, 3, 4, 5%의 농도로 제조하였다. 그 결과 아세트산의 경우 약 5 log, 젖산은 최대 2 log CFU/cm2 감소하였으나, 구연산의 경우 1 log 이하로 미미한 수준이었다. 이에 따라 유기산 처리 효과를 더욱 극대화하기 위해 자외선과의 복합처리를 진행하고자 하였다. 두 균주는 모든 유기산에서 90% 이상 감소하여 초기 균주와 비교하였을 때 유의적인 차이(P<0.05)를 보였으며 특히 4%의 젖산은 자외선(360 mJ/cm2)과 함께 처리하였을 때, 2 log CFU/cm2이상 감소하였으며 같은 조건에서 아세트산은 5 log CFU/cm2이상의 저감능을 보였다. 그러나 본 연구에서 사용한 4% 농도의 아세트산으로 제조할 경우 이취가 매우 심하여 작업자가 생산환경에서 사용하기에 어려움이 있다. 이에 따라서 현장에 적용하기 위한 유기산과 자외선 최적 처리 조건은 4% 젖산 용액에 1분간 침지한 후 자외선을 20분 가량(360 mJ/cm2) 살균 처리하는 방법으로 선정하였다. 최종적으로 유기산 세척 및 자외선 처리가 된 칼로 돼지고기 절단 작업을 수행하였을 때, 현장 오염 수준의 진균류 농도에서 작업 후 돼지고기 표면으로 이행되는 오염량은 모두 불검출 되었다. 본 연구를 통하여 실험실 규모뿐만 아니라 최종적으로 현장에서 살균된 도구를 활용하여 작업 시 고기 표면까지 이행되는 교차오염을 방지할 수 있는 것으로 사료된다.

긴구배수로 감세공의 Filp Bucket형 이용연구 (Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel)

  • 김영배
    • 한국농공학회지
    • /
    • 제13권1호
    • /
    • pp.2206-2217
    • /
    • 1971
  • 본연구(本硏究)는 Dam 또는 여수토(餘水吐) 방수로등(放水路等) 급구배수로(急勾配水路)에 고속(高速)으로 유하(流下)되는 물을 감세처리(減勢處理)하기 (爲)한 감세공형식중(減勢工型式中) 보다도 구조(構造)가 간단(簡單)하고 시공(施工)이 용역(容易)하며 경제성(經濟性)이 높은 Flip Bucket 형감세공(型減勢工)에 의(義)하여 수리특성(水理特性)에 따른 일반적(一般的) 적용조건(適用條件)과 설계시공(設計施工)의 발전(發展)을 도모(圖謀)하기 위(爲)하여 연구(硏究)한 것으로서 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. Flip Bucket의 수리특성(水理特性)과 일반적(一般的) 적용조건(適用條件) Flip Bucket는 일반적(一般的)으로 다음과 같은 조건(條件)을 갖일 때에 채용(採用)할 수 있다. 가. 하류하천(下流河川)의 수위(水位)가 얕어서 도수형(跳水型) 감세공법(減勢工法)을 이용(利用)하며는 막대(莫大)한 공사비(工事費)를 요(要)하게 될 때 나. 하류하천(下流河川)의 하상(河床)이 안정(安定)할 수 있는 양질(良質)의 암반(岩盤)일 경우 다. 하류하천(下流河川)은 여수토(餘水吐) 방수로(放水路)의 중심선(中心線)에 연(沿)하여 적어도 전수두(全水頭)의 $3{\sim}5$배(倍)되는 거리까지는 하심(河心)이 거이 직선(直線)인 여건(與件)에 있을 경우 라. 방사수맥(放射水脈)의 낙하지점(落下地點)을 중심(中心)으로 해서 주위(周圍)에 민가(民家), 경지(耕地), 중요시설물등(重要施設物等)이 없고 수맥낙하(水脈落下)로 인(因)하여 생기는 소음(騷音), 토사붕양(土砂崩壤), 물방울등(等)으로 피해(被害)를 받을 염려(念慮)가 없을 경우 2. 설계(設計) 및 시공상(施工上)의 적용사항(適用事項) 1항(項)과 같은 현지조건(現地條件)을 갖이고 실제(實際) Flip Bucket 형(型)으로 설계(設計) 또는 시공(施工)을 할 경우 고려(考慮)하여야 할 사항(事項)은 가. Bucket의 반경(半徑)(R)은 $R=7h_2$로 적용(適用)이 가능(可能)하다. ($h_2$: Bucket 시점(始點)의 평균수심(平均水深) 나. 본형식(本型式)은 한계지면이하(限界施面以下) 방수로(放水路)의 구배(勾配)가 $0.25<\frac{H}{L}<0.75$의 수로(水路)에서만 채용(採用)한다. 다. 방사수맥(放射水脈)은 가급적(可及的) 하상면(河床面)에 직각(直角)에 가까운 각도(角度)로 낙하(落下)시켜야 하며 그러기 위(爲)해서는 수맥(水脈)을 높이 또는 멀리 방사(放射)시켜야 한다. 상기목적(上記目的)을 만족(滿足)시키는 Flip의 앙각(仰角)은 $\theta=30^{\circ}{\sim}40^{\circ}$를 적용(適用)하는 것이 좋다. 라. 상기(上記) 가${\sim}$다항(項)을 적용(適用)했을 때 유량별(流量別) 방사수맥(放射水脈)의 낙하거리(落下距離)는 그림-4.1에 의(依)하여 쉽게 추정(推定)할 수 있다.(단 실물(實物)에 대(對)한 제량(諸量)의 환산(換算)은 표(表-3.2)에 제시(提示)된 Froude 상사율(相似律)을 적용(適用)할 것) 마. Bucket 부(部)에 Chute Blocks를 설치(設置)하는 것은 방사수맥(放射水脈)의 낙하범위(落下範圍)를 확장(擴張), Energy를 분배(分配)시켜 주므로 하류하상(下流河床)의 세굴심(洗掘深)을 감소(減少)시키는 이점(利點)은 있으나 소맥낙하거리(小脈落下距離)는 다소(多少) 단축(短縮)되는 경향(傾向)이 있다. 바. 수맥낙하점(水脈落下點)에는 세굴(洗掘)에 의(依)한 깊은 Water Cushion을 형성(形成)한다. 최종적(最終的)으로 도달(到達)하는 Water Cushion의 깊이는 하상구성재료(河床構成材料)의 조성(組成)과 재질(材質)에는 거이 무관(無關)하며 단위폭당(單位幅當)의 유량(流量)과 전수두(全水頭)에 따라 소요(所要) 깊이까지 세굴(洗掘)된다. 사. 빈도(頻度)가 잦은 소유량(小流量)에서는 수맥(水脈)의 낙하거리(落下距離)가 단축(短縮)되어 Flip Bucket 하류단(下流端) 직하류(直下流)를 세굴(洗掘)하게 되므 Bucket로 하류단(下流端)은 견고(堅固)한 암반(巖盤)에 충분(充分)한 깊이까지 삽입절연(揷入絶緣)시켜 수맥하부(水脈下部)의 공기유통(空氣流通)을 원활(圓滑)하게 하므로서 Cavitation을 방지(防止)할 수 있다. 지하벽(直下壁)은 보통(普通) Bucket 말단(末端)에서 약(約) $0.3{\sim}0.5m$ 정도(程度)는 수평(水平)으로 하고 수평(水平)과 내각(內角)이 $120^{\circ}{\sim}130^{\circ}$되게 절단(切斷)하여 적당(適當)한 곳에서 수직(垂直)으로 하여 암반(巖盤)에 견고(堅固)히 절연(絶緣)시킨다. 아. 하상(河床)에 돌입(突入)한 고속(高速) Jet는 수두(水頭)의 크기에 따라 막대(莫大)한 Energy의 일부(一部)를 함유(含有)한채 하상면상(河床面上)을 유하(流下)하게 되므로 이 영향(影響)을 받는 하류제방(下流堤防)에는 상당구간(相當區間)까지 사석(捨石) 또는 기타(其他)의 방호조치(防護措置)를 강구(講究)해야 한다. 자. 낙하지점(落下地點)의 조건(條件)으로 보아 자연낙하지점(自然落下地點)보다 더욱 양호(良好)한 지점(地點)이 주위(周圍)에 구비(具備)되어 있을 경우에는 별도(別途)로 수리실험(水理實驗)을 통(通)하여 수맥(水脈)의 변이방법(變移方法)을 강구(講究)해야 한다. 차. 수로(水路)의 중심선(中心線)이 만곡(灣曲)을 갖던가 또는 본연구(本硏究) 범위(範圍)에서 제외(除外)된 구조물(構造物)에서 본형식(本型式)을 계획(計劃)할 때는 별도(別途)로 수리실험(水理實驗)을 행(行)하여야 한다.

  • PDF

第四紀 後期 英陽盆地의 自然環境變化 (The Late Quaternary Environmental Change in Youngyang Basin, South Eastern Part of Korea Penninsula)

  • 윤순옥;조화룡
    • 대한지리학회지
    • /
    • 제31권3호
    • /
    • pp.447-468
    • /
    • 1996
  • 영양부근 반변천이 절단감입곡류를 하여 생신 구유로상에 약 7m 두께의 토탄지가 형성되어 있다. 이 토탄지를 대상으로 boring 자료분석과 화분분석을 실시하여 토탄지의 지형발달과 제4기 식생 및 기후환경변화를 검토하였다. 구유로상(연지와 원당지 일대)에 토탄지가 형성된 것은 주위산지에서 공급된 선상지성 퇴적물에 의해 구유로가 막혀 습지가 형성되었기 때문에 가능했던 것으로 볼 수 있다. 토탄층은 그 특징에 따라 하부층과 상부층으로 구분되며, 이들 사이에는 부정합관계가 있다. 탄소 연대측정자료, 각 화분분대 화분조성상의 특징, 토탄퇴적속도 등으로 볼 때, 하부토탄층은 대략 60,000년 BP경부터 퇴적되기 시작하여 만빙기까지, 상부토탄층은 완신세 중기경부터 거의 현재까지 형성된 것으로 추정된다. boring지점 1(YY1)과 지점 2(YY2)의 토탄층 화분분석결과는 수목류의 우점시기로 대비할 때, 총 다섯개의 화분대(화분대 YYI, YYII, YYIII, YYIV와 YYV)와 12개의 아분대로 구분되었다. 두지점 간에는 퇴적상 뿐 아니라 화분조성에서도 일견 차이가 있다. 즉, 공통적으로 화분대 III이 존재했으나 화분대 I, II는 주상도 YY1에서만, 화분대 IV와 V는 주상도 YY2에서만 나타났다. 하부토탄층은 화분대 I, II, III시기를 포함하며, NAP시기로서 쑥(Artemisia)속, 오이풀(Sanguisorba)속, 미니라과(Umbelliferae), 벼과(Gramineae)와 사초과(Cyperaceae)등 초본류의 비율이 월등히 높고, 한냉기 수목으로 출현하는 가문비나무(Picea)속, 소나무(Pinus)속, 자작나무(Betula)속 등의 목본류를 포함하며, 이들 목본류의 절대화분량은 상부토탄층에 비해 극히 적어 산림밀도가 낮은 Wurm빙기의 식생경관을 나타내었다. 상부토탄층은 화분대 IVb, V시기를 포함하며, AP시기로서 Pinus와 Quercus 등이 높은 비율로 나타내고 절대 화분량도 많아, 홀로세 온난기의 삼림경관를 나타내었다. 각 화분대 및 아분대 우점수목의 기후환경에 대응하는 생태적 특징으로 작성한 가상 기온변화곡선의 내용은 다음과 같다: 화분대 I은 Butula우점기로서 약 57,000년 BP까지 형성되었으며, 상대적 한냉기로 간주된다. 화분대 II는 EMW우점시기로서 $57,000{\sim}43$,000년 BP에 형성되었으며, Alt Wurm에서 mittel W${\"{u}}$rm으로 전환되는 Interstadial로 간주된다. 화분대 III은 43,000~15,000년 BP간의 가장 오랜 시기를 포함하며, mittel Wurm${\sim}$Jung Wurm기에 해당한다. 한냉기인 화분대 III시기 중에는 Betula, Pinus, Picea 등의 목본류가 교대로 우점하는데, YY1에서 Quercus 와 Picea의 화분조성 변화로 볼 때 아분대 IIId시기가 가장 한냉하였을 것으로 추정된다. 화분아분대 IVa는 하부 화분대와 상부 화분대간의 전환기층으로서 피나무(Tilia)속 우점기로 나타나며, Holocene에 해당하는 화분대 IVb와 V는 약 7,000년 BP부터 현재까지 식생변화로 각각 Quercus와 Pinus가 우점하는 시기로 한국 동해안의 曺(1979)의 화분대 I과 II에 각각 대비된다. Bartlein et al.(1986)의 diagram을 통해 볼 때, 영양지역의 Wurm빙기 최성기의 7월 평균기온은 현재보다 약 10${^\circ}$C 더 낮았을 것으로 추측된다.

  • PDF