• Title/Summary/Keyword: 전 전두피질

Search Result 5, Processing Time 0.022 seconds

Learning-associated Reward and Penalty in Feedback Learning: an fMRI activation study (학습피드백으로서 보상과 처벌 관련 두뇌 활성화 연구)

  • Kim, Jinhee;Kan, Eunjoo
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.1
    • /
    • pp.65-90
    • /
    • 2017
  • Rewards or penalties become informative only when contingent on an immediately preceding response. Our goal was to determine if the brain responds differently to motivational events depending on whether they provide feedback with the contingencies effective for learning. Event-related fMRI data were obtained from 22 volunteers performing a visuomotor categorical task. In learning-condition trials, participants learned by trial and error to make left or right responses to letter cues (16 consonants). Monetary rewards (+500) or penalties (-500) were given as feedback (learning feedback). In random-condition trials, cues (4 vowels) appeared right or left of the display center, and participants were instructed to respond with the appropriate hand. However, rewards or penalties (random feedback) were given randomly (50/50%) regardless of the correctness of response. Feedback-associated BOLD responses were analyzed with ANOVA [trial type (learning vs. random) x feedback type (reward vs. penalty)] using SPM8 (voxel-wise FWE p < .001). The right caudate nucleus and right cerebellum showed activation, whereas the left parahippocampus and other regions as the default mode network showed deactivation, both greater for learning trials than random trials. Activations associated with reward feedback did not differ between the two trial types for any brain region. For penalty, both learning-penalty and random-penalty enhanced activity in the left insular cortex, but not the right. The left insula, however, as well as the left dorsolateral prefrontal cortex and dorsomedial prefrontal cortex/dorsal anterior cingulate cortex, showed much greater responses for learning-penalty than for random-penalty. These findings suggest that learning-penalty plays a critical role in learning, unlike rewards or random-penalty, probably not only due to its evoking of aversive emotional responses, but also because of error-detection processing, either of which might lead to changes in planning or strategy.

Neural Substrates of Picture Encoding: An fMRI Study (그림의 부호화 과정과 신경기제 : fMRI 연구)

  • 강은주;김희정;김성일;나동규;이경민;나덕렬;이정모
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.23-40
    • /
    • 2002
  • This study is to examine brain regions that are involved in picture encoding in normal adults using fMRI methods. In Scan 1, the picture encoding was studied during a semantic categorization task in comparison with word. In Scan 2 task type effects were studied both during a picture naming task and during a semantic categorization task with pictures. Subjects were asked to make decision either by pressing a mouse button (Scan 1) or by responding subvocally (naming or saying yes/no) (Scan 2). Regardless of stimulus type, left prefrontal, bilateral occipital, and parietal activations were observed during semantic processing in comparison with fixation baseline. Processing of word stimulus relative to picture resulted in activations in prefrontal and parieto-temporal regions in the left side while that of picture stimulus relative to word resultd in activations in bilateral extrastriatal visual cortices and parahippocampal regions. In spite of the same task demands, stimulus-specific information processings were involved and mediated by different neural substrates; the word encoding was associated with more semantic/lexical processings than pictures and the picture processing associated with more perceptual and novelty related information processings than word. Activations of dorsal part of inferior prefrontal region, i.e., Broca's areas were found both during the picture naming and during the semantic tasks subvocally performed Especially, during the picture naming task, greater occipital activations were found bilaterally relative to the semantic categorization task. indicating a possibility that greater and higher visual processing was involved in retrieving the name referred by picture stimuli.

  • PDF

Decreased White Matter Structural Connectivity in Psychotropic Drug-Naïve Adolescent Patients with First Onset Major Depressive Disorder (정신과적 투약력이 없는 초발 주요 우울장애 청소년 환아들에서의 백질 구조적 연결성 감소)

  • Suh, Eunsoo;Kim, Jihyun;Suh, Sangil;Park, Soyoung;Lee, Jeonho;Lee, Jongha;Kim, In-Seong;Lee, Moon-Soo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.25 no.2
    • /
    • pp.153-165
    • /
    • 2017
  • Objectives : Recent neuroimaging studies focus on dysfunctions in connectivity between cognitive circuits and emotional circuits: anterior cingulate cortex that connects dorsolateral orbitofrontal cortex and prefrontal cortex to limbic system. Previous studies on pediatric depression using DTI have reported decreased neural connectivity in several brain regions, including the amygdala, anterior cingulate cortex, superior longitudinal fasciculus. We compared the neural connectivity of psychotropic drug naïve adolescent patients with a first onset of major depressive episode with healthy controls using DTI. Methods : Adolescent psychotropic drug naïve patients(n=26, 10 men, 16 women; age range, 13-18 years) who visited the Korea University Guro Hospital and were diagnosed with first onset major depressive disorder were registered. Healthy controls(n=27, 5 males, 22 females; age range, 12-17 years) were recruited. Psychiatric interviews, complete psychometrics including IQ and HAM-D, MRI including diffusion weighted image acquisition were conducted prior to antidepressant administration to the patients. Fractional anisotropy(FA), radial, mean, and axial diffusivity were estimated using DTI. FMRIB Software Library-Tract Based Spatial Statistics was used for statistical analysis. Results : We did not observe any significant difference in whole brain analysis. However, ROI analysis on right superior longitudinal fasciculus resulted in 3 clusters with significant decrease of FA in patients group. Conclusions : The patients with adolescent major depressive disorder showed statistically significant FA decrease in the DTI-based structure compared with healthy control. Therefore we suppose DTI can be used as a bio-marker in psychotropic drug-naïve adolescent patients with first onset major depressive disorder.

Alterations of Cerebral Blood Flow and Cerebrovascular Reserve in Patients with Chronic Traumatic Brain Injury Accompanying Deteriorated Intelligence (지능 저하를 동반한 두부외상 환자에서 뇌혈류 및 혈류예비능의 변화)

  • Song, Ho-Chun;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.183-198
    • /
    • 2000
  • Purpose: The purpose of this study was to evaluate alterations of regional cerebral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunction in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Materials and Methods: Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolamide brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM'97) Results: CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Conclusion: Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.

  • PDF

Developmental Difference in Metacognitive Accuracy between High School Students and College Students (메타인지 정확성의 발달 차이 연구: 고등학생과 대학생 데이터)

  • Bae, Jinhee;Cho, Hye-Seung;Kim, Kyungil
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.1
    • /
    • pp.53-67
    • /
    • 2015
  • Metacognitive monitoring refers to high dimensional cognitive activities. Understanding one's own cognitive processes accurately can make effective controls for their performance. Brain area related with metacognition is PFC which is completed the order of late and it can be inferred that monitoring abilities is developing during late adolescent. In this study, we explored the developmental difference in monitoring accuracy between high school students and college students using by measuring JOL(Judgment of Learning). Participants was asked that they study Spanish-Korean word pairs and judge their future performance of memory. In the result, people in both groups thought that they could remember word pairs better than their actual performance. Absolute bias scores which mean the degree to predict their performance apart from true scores showed the interaction between subject groups and task difficulty. Specifically, people judged their learning state quite accurately in easy task condition. However, in difficult task condition, both groups showed inaccuracy for predicting their learning and the magnitude of the degree was bigger in the group of high school students.